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Abstract

Audio-to-audio alignment is the task of synchronizing
two audio sequences with similar musical content in time.
We investigated a large set of audio features for this task.
The features were chosen to represent four different
content-dependent similarity categories: the envelope, the
timbre, note-onsets and the pitch. The features were
subjected to two processing stages. First, a feature subset
was selected by evaluating the alignment performance of
each individual feature. Second, the selected features
were combined and subjected to an automatic weighting
algorithm.

A new method for the objective evaluation of audio-
to-audio alignment systems is proposed that enables the
use of arbitrary kinds of music as ground truth data. We
evaluated our algorithm by this method as well as on a
data set of real recordings of solo piano music. The
results showed that the feature weighting algorithm
could improve the alignment accuracies compared to the
results of the individual features.

1. Introduction

Audio-to-audio alignment describes the process of
retrieving corresponding points in time in between two
audio signals with the same or a similar content. It
requires an analysis of the audio files that enables a
mapping of points in time in one signal to points in time
in the other signal.

The knowledge of those synchronization points
enables a variety of different use cases.

. From a musicological point of view, the information
could be used to analyse several recordings of the

same piece of music and compare it to a given
reference in order to investigate the tempo variations.

. In the same context, alignments are used to enable
quick browsing for certain parts in recordings in
order to easily compare parts auditorily (Dixon &
Widmer, 2005; Müller, Mattes, & Kurth, 2006).

. In connection with a dynamic time-stretching algo-
rithm, the knowledge of corresponding points in time
can be used to adjust the timing of one recording to
that of a second. This has a practical use especially in
a music production environment. The different voices
of a homophonic arrangement (e.g. the backing
vocals in a pop song) can for example be auto-
matically synchronized to the lead voice. The same
applies for different instruments playing lines in
unison or at least in the same rhythm.

. In film productions the audio track occasionally has
to be re-recorded in case of unwanted noise and
distortions in the original track. An automatic
synchronization could aid matching the studio
recording to the original track.

As these examples illustrate, the signals that are to be
aligned can range from speech over monophonic music
signals to complete mixes. Therefore, the criteria on
which an alignment of the signals is based can be diverse.

In this work, we focus on four different types of inter-
signal similarities and investigate the performance of
various audio features in combination with the standard
dynamic-time-warping algorithm (Rabiner & Juang,
1993). Most of these features are well established and
can be assumed to give a meaningful representation of
certain aspects of the content of audio signals.

The remainder of the paper is structured as follows: in
the following section, previous work on audio-to-audio
alignment is shortly summarized. In Section 3 we
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introduce the investigated features and describe the
criteria by which they were chosen. An explanation of
the evaluation procedure is given in Section 4, where we
describe the construction of the ground truth as well as
the evaluation metrics. The results of the single feature
evaluation and the subset selection are presented in
Section 5. Section 6 pursues the question of how to
combine the features and introduces a new method for
this task. This method is evaluated in Section 7. Section 8
finally concludes this work with a summary and an
outlook.

2. Related work

Previous work can be found in the context of audio
matching where different performances of the same piece
of music are compared to allow for switching the
playback between them. There are also closely related
publications in the context of audio-to-score alignment;
here, some approaches align a synthesized version of the
score to the audio track and thus also perform audio-to-
audio alignment.

Dixon and Widmer (2005) proposed an alignment-
system called ‘MATCH’. To measure the similarity
between the audio frames of the recordings a single
onset-related feature was used. For each audio track, the
half-wave-rectified difference spectrum of consecutive
non-linearly warped FFT spectra was calculated and the
Euclidean distance was used to measure the cost
between the frames of the different tracks. For the
computation of the alignment path, the standard
dynamic time warping (DTW) algorithm was modified
to allow for a forward calculation of the path. The
ground-truth data for the evaluation consisted of three
different data sets: the first set included several piano
recordings of the same piece of music played on a special
grand piano that enabled the recording of the exact
onset times of the notes. For the second data set,
different commercially available piano recordings were
labelled by a beat-tracking system. The third set
consisted of non-piano music and was solely evaluated
informally.

The system of Müller et al. (2006) mainly focused on
reducing the computing time of the DTW to enable the
analysis of long pieces such as whole movements of
classical music. The proposed method was called ‘multi-
scale DTW’ (MsDTW), and worked by iteratively
increasing the resolution of the cost matrix in three
stages. In stages two and three the previously computed
path was used to define the constraint region for the
current path calculation. As the only feature a filter-bank
based pitch chroma (see below) was used, which was
calculated at different frame sizes and frame rates, the
smallest being 200 ms and 10 Hz. An evaluation of
the alignment accuracy itself did not take place, only the

deviation of the MsDTW path from the optimal
unconstrained DTW path at the highest resolution was
calculated.

In the work of Hu and Dannenberg (2003), several
features including MFCCs, pitch histogram and pitch
chroma representations (see below) were evaluated. The
authors report that the pitch chroma proved to be most
appropriate for the task. A DTW algorithm without
locality constraints was used. The accuracy of the
algorithm was evaluated by manually annotating five
points in three different pieces of music and calculating
the deviation of the DTW path at these specific
positions.

Turetsky and Ellis (2003) investigated a larger set of
features: a reduced version of the STFT-magnitude
spectrum was raised to several powers and the discrete
derivatives in both time and frequency domain were
calculated. The alignment results were not subjected to
an objective evaluation but simply compared by simul-
taneously listening to the audio and an aligned resynth-
esis of the score.

3. Feature set

It has already been mentioned in the introductory section
that different use cases may require different similarity
measures for the alignment procedure. More specifically,
the similarities between the signals can be based on
various musical parameters such as rhythm, pitch, timbre
and dynamics. The voices of a homophonic arrangement
for example differ in pitch, but may be aligned by rhythm
or timbre information. Different instruments playing in
unison may be synchronized by pitch and rhythm, but
timbre information will be useless. Thus, we chose
features that provide useful low-level information for
the higher level musical parameters mentioned above.
The features were grouped into the four categories:

. envelope features,

. timbre features,

. pitch features and

. onset features.

The features were extracted frame by frame. Both the
length of the frame and the temporal distance between
consecutive frames have influence on the attainable
precision of the synchronization. As long as nothing else
is specified in the following sections, a frame size of
23 ms was used for time domain features and a frame size
of 46 ms for features in frequency domain. The step size
(hop size) of 23 ms was the same for all features assuring
that the features were calculated at the same points in
time. Before the feature extraction process, the audio files
were downmixed to mono and normalized so that the
maximum absolute amplitude was set to 1.
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In the following sections, X(k, b) denotes the FFT
spectrum of the b-th audio frame at the kth frequency bin
index. The sample rate is denoted by fs.

3.1 Envelope features

By visually examining the waveform of audio files in an
arbitrary audio editor, an intuitive identification of
similar parts is frequently possible. Especially when the
signals were recorded in the same room and with the
same musicians, the signal envelope enables the identi-
fication of corresponding parts. The envelope feature
group includes on the one hand simple objective
measures for the envelope itself and on the other hand
perceptually motivated loudness measures. The following
features were implemented:

. Power (P): power level of each frame;

. Maximum value (Max): level of the maximum abso-
lute sample of each frame;

. Loudness DIN 45631/ISO 532 B (LDIN) and Loudness
ITU-R BS.1387 (LITU): these two loudness measures
are based on the work of Zwicker and Fastl (1999)
and utilize models for the outer ear function, the
calculation of so-called excitation patterns to con-
sider masking effects, and finally the overall loudness
as the integral over the specific loudness values per
critical band. The implementation stems from an
open source project called ‘FEAPI’.1 Both features
use a framesize of 0.74 s.

3.2 Timbre features

The timbre of an instrument describes its sound quality.
Besides pitch and loudness, timbre is considered as ‘the
third attribute of the subjective experience of musical
tones’ (Rasch & Plomb, 1982). Unlike loudness and
pitch—which are unidimensional properties as sounds
with different loudness and pitch can be ordered on a
single scale from quiet to loud and low to high,
respectively—timbre is a multidimensional property.
Although timbre is nowadays understood as a phenom-
enon that takes into account both temporal and spectral
patterns (Moore, Glasberg, & Bear, 1997) the features
presented below describe spectral shape only.

. Spectral centroid (SC): the spectral centroid is
defined as the centre of gravity of the power density
spectrum. Our implementation follows the definition
of the MPEG-7 standard (ISO/IEC, 2002). Listening
test results indicate that the spectral centroid is well
correlated to the perception of the brightness of a
sound (v. Bismarck, 1974).

. Spectral spread (SS): the spectral spread measures
how far the spectral power is spread around the
centroid. The exact definition can be found in the
MPEG-7 standard (ISO/IEC, 2002).

. Spectral rolloff (SR): the spectral rolloff is a measure
for the extent of the spectrum. It computes the
frequency below which 85% of the accumulated
magnitude is concentrated (Scheirer & Slaney, 1997).

. Spectral flatness (SF): the spectral flatness estimates
the similarity of a given spectrum to the spectrum of
white noise. It is defined as the ratio of the geometric
and the arithmetic mean of the power spectrum
(Jayant & Noll, 1984).

. Mel frequency cepstral coefficients (MFCC): origin-
ally introduced to the speech processing domain,
MFCCs have proven to be adequate to also describe
similarities of music signals (Logan, 2000). The
calculation we used here stems from Slaney (1998).
It divides the magnitude spectrum into 40 mel bands.
A discrete cosine transform is applied to the
logarithmized mel spectrum. We used only the first
five coefficients as features.

. Mono strength (MS): this custom-designed feature
provides information about whether the given spec-
trum contains a single note or several notes. It
estimates the most salient fundamental frequency as
the maximum of the harmonic product spectrum
(HPS) (Schroeder, 1968) and relates the energy of
the first harmonics Eh(b) to the total energy of the
spectrum Etotal(b). The HPS is computed by

HPS ðk; bÞ ¼
YNh;1

i¼1

jXði $ k; bÞj;

with

Nh;1 ¼ min 5; floor
fs

2 $ f ðkÞ

! "# $
:

The energy of a tone with a fundamental frequency at
index k0 is computed as:

EhðbÞ ¼
XNh;2

i¼1

max fjXði $ k0 % 1; bÞj2; jXði $ k0; bÞj2;

jXði $ k0 þ 1; bÞj2g;
with

Nh;2 ¼ floor
fs

2 $ f0

! "

as the total number of harmonics in the spectrum. The
result is finally calculated by

MSðbÞ ¼ EhðbÞ
EtotalðbÞ

:
1http://feapi.sourceforge.net/
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3.3 Pitch features

The pitch-chroma is a well-established feature for the
low-level representation of tonal content in polyphonic
music signals. It is an octave-independent measure for
the intensity of each pitch class (Bartsch & Wakefield,
2001).

. Pitch chroma (PC) 1 and 2: the first two pitch chroma
computations apply weights to the magnitudes of the
spectrum and sum up all magnitudes at the bins
belonging to the same pitch class. Pitch chroma 2 uses
triangular weighting filters, centred at the semitones
of the equal-tempered scale and assuming a tuning
frequency of 440 Hz (see lower plot in Figure 1).
Pitch chroma 1 considers the case that the tuning
frequency may not equal 440 Hz and that the pitches
do not exactly match the equal-tempered scale.
Therefore, the weighting filters have a flat frequency
response in the range of 30 cent around the
semitone’s mid frequency and take the form of a
trapezoid (see upper plot in Figure 1). For both pitch
chromas, the following calculation rule is used:

PCiðl; bÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

8k2Kl

ðjXðk; bÞj $ FiðkÞÞ2;
s

where i takes the values 1 and 2, Fi(k) denotes the
weighting function and Kl is the set of frequency
indexes of the pitch class l.

. Pitch chroma 3: instead of applying weights and
accumulating the magnitudes, the third calculation
rule uses the maximum amplitude of each semitone
band. If a detected maximum lies at the edge of the
band, it is checked whether the magnitudes at the
adjacent frequency indexes are smaller than the
maximum. Thus, only real local maxima are taken
into account. The individual pitch classes are

Fig. 1. Trapezoidal and triangular weighting of the semitone
intervals.

computed in the same way as with pitch chromas 1
and 2 except that only the maxima are summed.

. Pitch chroma 4: pitch chroma 4 searches for local
maxima in the same way as pitch chroma 3.
Additionally local maxima with a level smaller
than 60 dB below the maximum amplitude are
discarded.

3.4 Onset features

Especially the alignment accuracy of note onset times
appears to be of utter importance for the alignment of
musical sequences when considering the effort musicians
put into playing synchronously. However, the alignment
of two series of onset times seems to be prone to errors
given the reduced amount of information in these series
and the likelihood of onset detection errors. Therefore,
instead of a series of discrete onset times we used a
novelty function that indicates the likelihood of an onset
occurrence for each analysis block.

. Spectral flux (SX): one of the simplest measures for
onset detection is the spectral flux, which is calculated
as the Euclidean distance of consecutive short-time-
magnitude-spectra (e.g. Scheirer & Slaney, 1997).
Since the flux does not consider the direction of the
magnitude variations, it is a measure for both onsets
and offsets.

. Detection function after Goto (OG): the detection
function proposed by Masataka Goto (2001) com-
putes a distance between the power spectra of
consecutive audio frames. For every frame and for
every frequency index a decision is made whether the
power density in the preceding frame at the same
index and the two adjacent indexes is less than the
power density at the considered index of the current
and the next frame. The distance is only increased if
both the current and the successive frame have
greater values than all of the three indexes of the
preceding spectrum.

. Closely related to pitch chroma 1, the difference pitch
chroma 1 (DPC1) weights the spectral differences
with the trapezoid filters shown in Figure 1. This can
be expressed by

Xdiffðk; bÞ ¼ ðjXðk; bÞj % jXðk; b% 1ÞjÞ $ F1 ðkÞ:

For each pitch class the squared differences are summed
taking into account the signs of the differences:

Xsumðl; bÞ ¼
X

8k2Kl

signðXdiffðk; bÞÞ $ X2
diff ðk; bÞ:

Finally, the DPC1 is then computed with

DPC1ðl; bÞ ¼ signðXsumðl; bÞÞ $
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jXsum ðl; bÞj

p
:
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The symbols used here were explained for pitch chromas
1 and 2 in Section 3.3.

. Difference pitch chroma 2 (DPC2): analogous to
pitch chroma 3, this feature detects the maxima and
minima of the spectral differences in each semitone
band and chooses the one with the largest absolute
value. The extrema are combined in the same manner
as for pitch chroma 3.

. Difference pitch chroma 3 (DPC3): the third variant
equals DPC1 except that in the difference spectrum
only magnitude increases are considered. This process
is commonly denoted as half-wave rectification.

Note onsets and offsets may not only be described by
magnitude increases in the frequency domain. Many
other parameters may indicate note-on and note-off
events. A transient for instance will in most cases exhibit
a noisy spectrum while the subsequent quasiperiodic part
will show a harmonic spectrum. In this case, the onset is
characterized by a change in timbre. Onsets of percussive
sounds on the other hand are often easily identifiable in
the waveform. In this case, the time domain envelope can
be used to characterize the onset. These examples make
clear that an onset can be identified by any change of the
features referred above. We thus additionally used the
difference of consecutive feature values of the features
described in the preceding sections as onset features.

3.5 Low pass filtering

It might be possible to increase the robustness of the
synchronization even in the case of relatively dissimilar
signals by applying a low pass filter to the features. The
idea was to eliminate quick changes in the feature values
so that the DTW path will follow the direction of the true
path coarsely. Thus, additional features can be generated
by applying a single pole low pass filter with a time
constant of 250 ms to a large part of the features. In
order to avoid a delay, the filter was used in both forward
and reverse direction.

3.6 Feature summary and naming convention

In Sections 3.1–3.4, 23 different features were reviewed.
For all features except for the two loudness measures, a
low pass filtered equivalent was computed. Those
features are labelled with an appended ‘LP’. Addition-
ally, the differences of consecutive feature values were
computed for the features of all groups except for the
group of onset features, which is denoted by a prepended
‘Dev.’. Accordingly, a total number of 62 features were
evaluated individually for their alignment accuracy (see
Section 5.1). The onset feature group is the largest group
with a total number of 28 features, followed by the group
of timbre features with 20 features. The group of the

pitch features contains only eight features—each 12-
dimensional feature vector is treated as a single feature—
and the envelope feature group contains only six
features.

3.7 Feature postprocessing and evaluation

The features described in the preceding sections represent
different properties of the audio signals and have
different output ranges. When combining the features
in a feature vector and calculating distances between
those vectors, it is necessary to adjust their ranges in
order to ensure that all features have the same influence
on the distance calculation. But not only the range of the
feature values is important, they should also possess the
same or at least a similar distribution. For example, even
if two features are designed to lie within the same range,
the distribution of the first may have its maximum near
the lower bound of the range and the distribution of the
second near the upper bound. In this case, the distance
calculation will be dominated by the feature that is
concentrated near the upper bound.

3.7.1 Feature distributions

In order to match the feature distributions, a target dis-
tribution has to be chosen to which all the feature
distributions will be transformed if necessary. In princi-
ple, any arbitrary distribution can act as target, however,
in most cases the Gaussian or normal distribution is used
because it is observable in many natural processes.

Various approaches exist to transform a given
distribution into a normal distribution. Most common
is the power transform resp. Box–Cox (1964) transform
that requires the estimation of a parameter l. However,
the Box–Cox transform only considers a limited class of
transformation functions and thus does not guarantee
that any arbitrary distribution can be approximated to a
normal distribution. More recently a numerical method
has been proposed that exactly fits arbitrary distributions
to the normal distribution (van Albada & Robinson,
2007). The drawback of this method, however, is that the
transformation function for every feature has to be
stored numerically.

To keep it simple, we did not apply any of these
transformation methods to the features. Only those
features that exhibited a nearly exponential distribution
were transformed by the natural logarithm. All features
that showed a single apex and an evident symmetry were
left unmodified.

To test a given distribution for normality, various
procedures exist (e.g. the Kolmogorov–Smirnov test,
Lilliefors test, Shapiro–Wilk test, D’Agostino–Pearson
omnibus test) (Thode Jr., 2002), but according to
experience they fail for most audio feature distributions,
since a very large number of observations is used. Instead
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of using one of the above-mentioned normality tests, we
simply calculated the skewness and the kurtosis of the
features to measure the similarity to the normal
distribution. The skewness measures the symmetry of
the distribution; fully symmetrical distributions exhibit a
skewness of 0. As a rule of thumb, distributions with
values smaller than 2 are not significantly skewed (Miles
& Shevlin, 2001). This rule applied to 90% of the
unidimensional features described above, 65% even
showed a skewness of less than 1. The kurtosis provides
information about the steepness of the distribution, a
normal distribution has a kurtosis of 0. A proportion of
85% of the investigated features had positive kurtosis
values meaning that the distribution is more peaked than
the normal distribution.

3.7.2 Normalization

After having ensured that the distributions are suffi-
ciently similar, the features were standardized. In the case
of a normal distribution this is done by subtracting the
mean from all feature values and dividing them by the
standard deviation. Since the distributions are slightly
skew, the median is better suited to match the maximum
of the distribution than the mean. Moreover, we used the
root mean squared deviation from the median instead of
the standard deviation as divisor. The standardization is
given by

fi;std ðbÞ ¼ fi ðbÞ % mi

si
:

fi(b) denotes the i-th feature, mi the median of the feature
distribution and si the root mean squared deviation of
the distribution which is calculated by

si ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

B

XB%1

b¼0

ðfiðbÞ % miÞ2;

vuut

with B being the total number of observations of the
feature.

The normalization of multidimensional features such
as the pitch chroma requires special consideration. In the
particular case of the chroma, the pitch information
should be level-independent. Thus, each single vector has
to be normalized. Usually the Manhattan or the
Euclidean norm are applied. With the former, the vectors
are mapped to a hyperplane in the 12-dimensional space,
with the latter, the vectors are mapped to a hypersphere.
This is illustrated for the two-dimensional case in
Figure 2. We decided to apply the Manhattan norm to
the chroma-vectors.

3.7.3 Principal component analysis

In order to get an impression of the correlation of the
features, each of the four feature groups was subjected to

a principal component analysis (PCA). The PCA gives
information about the true dimensionality of the feature
space. In the onset-feature group, we omitted the
difference-pitch-chroma calculations, because the corre-
lation of features with different dimensions cannot be
computed. The correlation of the pitch chroma vectors
was obtained by concatenating the observed chroma
vectors to one vector, assuming that all pitch classes are
equally likely to appear. The eigenvalue spectra of the
PCA are displayed in Figure 3.

The results show that the correlation among the
envelope features and the correlation among the pitch
features is high. For the remaining two feature groups,
the true dimensionality cannot be specified clearly
because the eigenvalues decrease continuously and there
is no clearly identifiable step in the eigenvalue spectrum.
If we assume the dimensionality to be defined by the
number of eigenvalues greater than 1—indicated by the
dashed line in Figure 3—in both cases a dimensionality
of 5 can be observed.

Fig. 2. Standardization of two-dimensional features. Left:
Manhattan norm; right: Euclidean norm.

Fig. 3. Variance of principal components of the feature groups.
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In the case of the pitch features, the high correlation is
not surprising, since the calculation rules for the different
chroma-features differ only slightly. The high correlation
of the envelope-features is explained by the unidimen-
sionality of the envelope itself. As mentioned before
(Sections 3.2 and 3.4), both the timbre of a sound and the
onset of musical events are multidimensional properties
without a clearly defined dimensionality.

4. Data sets and evaluation metrics

In order to evaluate the accuracy of an estimated
alignment path, a set of pairs of audio files with clearly
defined synchronization points is necessary. As described
in Section 2, earlier studies generated the ground truth
data either by manually or automatically labelling certain
corresponding points in time or by measuring onset times
during the recording by using a computer-monitored
grand piano. Manually annotating points in time is a
rather arduous process and thus generally only few
points can be labelled. The drawback of using the piano-
generated data is its restriction to solo piano music;
furthermore, confining the evaluation to note-onsets
might be sufficient for the case of solo piano music,
however, other kinds of music may also require the
synchronization of the time in between onsets.

We propose another method to produce the ground
truth data in Section 4.1 which enables the evaluation of
alignment algorithms with high accuracy and on a wide
range of musical styles and instrumentations. This
dataset was used for the individual evaluation of the
features (see Section 5.1) as well as for the training and
evaluation of our proposed feature weighting algorithm
(Section 6.1). This data set is based on artificially
modified pairs of audio signals; in order to evaluate the
algorithm on real recordings, we used a second data set
which is described in Section 4.2.

4.1 Time-stretching data set

4.1.1 Description

The pairs of audio files for this data set were generated
by subjecting a number of audio files to a widely used
commercially available dynamic time-stretching algo-
rithm2 and subsequently applying timbre and pitch
modifications to these signals. The audio files were
chosen to represent typical use cases for the synchroniza-
tion task and comprised several monophonic and
polyphonic music signals as well as speech signals. All
files were trimmed to a length of 30 s.

Two different tempo curves were applied to the audio
files: for the first one, the time stretch factor was
modulated by a triangular waveform at a frequency of
1
3 Hz. The resulting stretch factors had the range 3

4 ;
4
3

& '
. A

study of different performances of a Beethoven string
quartet indicates that the amount of this variation is a
reasonable assumption (Lerch, 2008, pp. 115–116). The
second tempo curve had a monotonically increasing
stretch factor in order to ensure that a completely
diagonal path—the path preferred by standard DTW if
the similarity matrix entries are very similar to each
other—will not result in unreasonably good evaluation
results.

To simulate certain real-world use cases, further
editing was applied to these signals: to simulate different
singers and speakers, formant shifting was applied to
some of the signals. Different voices of a homophonic
arrangement were obtained by the use of an intelligent
harmonizing plug-in and finally varying timbres of
musical instruments were modelled by synthesizing
MIDI-files with different sounds. Since not all of these
processing steps are appropriate for any kind of audio
signals, only those modifications were applied that
seemed suitable for the chosen signals.

Since it is not reasonable to use pitch features to align
audio signals with different pitches or to use timbre
features to synchronize music played by different
instruments, each test signal pair was assigned to those
feature groups (see Section 3) that can in principle be
used for the alignment process. In order to restrict the
amount of data generated by the feature extraction stage,
for every feature group 20 test signal pairs were chosen.
These 80 pairs of approx. 30 s length contain a total of
more that 200,000 observations and the alignment of
each pair of audio files includes more than 1,500,000
comparisons between audio frames.

As an example, Table 1 shows the test set for the onset
features. It contains different types of audio signals,
ranging from solo instruments and voices to ensemble
music up to male and female speakers. One half of the
signals was processed with the first tempo curve (see
above), the other half with the second. The additional
modifications to the signals are listed in the right column.
The amount of modified MIDI files was kept at a
minimum: two of the signals of the envelope and the
onset data set, five signals of the pitch data set and none
of the signals of the timbre data set were synthesized
MIDI files.

4.1.2 Metrics

With the ground truth described in the preceding section,
it is possible to calculate the error of any given alignment
path. Figure 4 exemplifies the calculation: the true path is
shown in grey, the estimated path in black. db denotes the
deviation between the point in time to which frame2élastique Pro by zplane.development
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number 20 of the original signal is mapped by the
calculated path and its actual position in the time-
stretched signal. Given the deviations at all frames,
several overall error measures can be defined:

. the mean deviation:

dmean ¼ 1

Borig

XBorig%1

b¼0

db;

Table 1. Test set for onset features. Each test signal was
subjected to a dynamic time-stretching algorithm, applying one
of the two tempo curves. Further modifications of the stretched
signal are shown in the right column.

No. Content
Tempo
curve Modification

1 female singer 1 formant shift
2 female singer 2 upper part
3 male singer 1 formant shift
4 male singer 2 upper part
5 solo violin 1 upper part
6 solo saxophone 2 upper part
7 solo clarinet 1 upper part
8 solo trombone 2 different timbre
9 solo violoncello 1 different timbre
10 orchestraþ choir 2 none
11 string quartet 1 none
12 wind quintet 2 none
13 voice and piano 1 none
14 chamber orchestra 2 none
15 male voice 1 1 formant and pitch shift
16 male voice 2 2 formant and pitch shift
17 male voice 3 1 formant and pitch shift
18 female voice 1 2 formant and pitch shift
19 female voice 2 1 formant and pitch shift
20 female voice 3 2 formant and pitch shift

Fig. 4. Calculation of the alignment accuracy. borig and bstretch
indicate analysis blocks of the audio signals of a test signal pair;
the reference path is shown in light grey, the calculated
alignment path in dark grey.

with Borig denoting the total number of frames in the
reference audio file. The mean deviation gives infor-
mation about a possible bias of the path;

. the mean absolute deviation measures the precision of
the alignment and is thus the most important
criterion:

dabs ¼
1

Borig

XBorig%1

b¼0

dbj j;

. the maximum deviation is a measure for the robust-
ness of the alignment:

dmax ¼ max
b

ð dbj jÞ;

. another error measure that does not make use of the
single deviations db is the relative number of matching
path points which calculates the ratio of the number
of path points matching the ground truth to the total
number of reference path points.

Since the mean deviation can be very small even if the
alignment path shows large deviations and the relative
number of matching path points may be small even if the
alignment is relatively precise, mainly the mean absolute
deviation dabs and the maximum deviation dmax were
used for the evaluations in Sections 5 and 7.

4.2 Chopin data set

4.2.1 Description

The Chopin data set (Goebl, 2001) consists of recordings
of two excerpts of solo piano music by F. Chopin (Etude
in E major, op. 10 No. 3, bars 1–21 and Ballade in F
major, op. 38, bars 1–45) played by 22 pianists on a
computer-monitored grand piano. It is the same data set
that was used by Dixon and Widmer (2005) (cf. Section
2). The length of the performances of the Ballade ranged
from 1:52 to 2:31 min and the Etude recordings were
between 1:10 and 1:34 min in length. For each recording
the onset time of each played note is available, which
enables the comparison between the corresponding note
onset times of two performances and an alignment path.

4.2.2 Metrics

For this data set, the same evaluation metrics as
described by Dixon and Widmer (2005) were applied.
The authors define a score event as a set of simulta-
neously played notes according to the score. Each of
these score events is assigned a unique onset time by
averaging the slightly varying onset times of simulta-
neously played notes of the performance. This enables a
unique mapping of the onset times of all score events of
two distinct performances. Each mapping of a score
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event can be marked as a single point within the distance
matrix and the deviation to the alignment path can be
computed as the Manhattan distance between each score
event and the nearest point of the alignment path. Given
all pointwise distances, the average and the maximum
deviation can be computed.

Additionally the authors propose the computation of
the percentage of deviations less than or equal to 0, 1, 2,
3, 5, 10, 25 and 50 frames.

5. Feature performance and subset selection

5.1 Individual feature performance

All features described in Section 3 were individually
tested for their suitability for the synchronization task
using the test set and the metrics introduced in Section
4.1. For every individual feature, a distance matrix
between every test signal pair was computed. The entries
of the distance matrix were calculated using the absolute
difference of the unidimensional features, for multi-
dimensional features—such as the pitch chromas—the
Euclidean distance between the feature vectors was used.
The path through the distance matrix was detected using
the DTW algorithm. We used the standard DTW
algorithm that allows single steps for the alignment path
in horizontal, vertical and diagonal directions. No
penalty was applied to the diagonal direction. The results

are shown in Figure 5. The features are grouped into the
four groups introduced in Section 3 and are sorted by
their mean absolute error. The mean absolute error is
displayed by the black bars, the grey bars show the
maximum error. Since the error measures have different
ranges, the domains are displayed at the left and right
vertical axes.

When comparing the different feature groups, it is
important to bear in mind that the results were obtained
by means of different test signal sets (see Section 4.1).
That means that depending on the use case and the given
pair of audio signals, a pitch feature for instance may not
yield a better synchronization result than an envelope
feature. Comparisons between features of different
feature categories are only possible provided that the
signals are principally synchronizable by those cate-
gories.

Under this precondition the pitch features perform
better than the remaining feature groups regarding both
accuracy and robustness. The four pitch chromas nearly
yield the same result, PC3 achieves the best accuracy
with a mean absolute deviation of 16.9 ms. The fact that
the low pass filtered chromas achieve a higher mean
absolute deviation is not surprising since fast variations
of the features are eliminated. But even the worst feature
(PC2 LP) still achieves a comparably low dabs of 40.7 ms.
The maximum deviation, however, slightly decreases
when using the low pass filtered chroma vectors, the
lowest maximum error of 0.56 s is achieved by PC3 LP.

Fig. 5. Synchronization results of individual features: the left ordinate displays the mean absolute deviation of each feature (black
bars), the right ordinate displays the maximum deviation (grey bars).
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The envelope, on the contrary, seems to be a weak
property to synchronize audio files, since even the best
envelope feature (Max) yields a maximum deviation of
approx. 3.7 s. Furthermore, the mean absolute deviation
of the best envelope features is higher than that of many
other features and amounts to 83.2 ms.

The results of the single features are significantly more
spread in the remaining feature groups. While there are
multiple features that perform well and exhibit mean
absolute deviations of less then 100 ms, there are others
that do not work at all for the task. Maximum deviations
of more than 12 s at a file length of approx. 30 s indicate
a complete failure of the alignment and thus a completely
useless feature. Among the timbre features, the spectral
flatness (SF) achieves the highest accuracy with a dabs of
33.5 ms, however, MFCC2 yields a smaller dmax of
0.77 s. In the onset feature group, the use of the first
difference of the power feature (Dev. P) results in a mean
absolute deviation of 22.7 ms, the smallest maximum
deviation of 0.51 s is achieved by Dev. MFCC1.

5.2 Subset selection

To reduce dimensionality and to decrease computational
cost, the worst features were eliminated from the feature
set. The subset selection was accomplished only based on
the results of the single feature analysis according to the
following rule: for each group, those features that
belonged to the 40% worst in terms of the mean absolute
deviation were discarded when they at the same time
belonged to the 40% worst with respect to the mean
deviation or the maximum deviation. All discarded
features are marked by an asterisk in Figure 5.

6. Feature space transformation

The alignment results can be improved further by using
multiple features to represent the audio. Provided that
each feature contributes new information about the
audio signals, the combination of features may lead to
better results than using just one single feature. The
features can be combined in a feature vector f(b) per
block. This vector weights all features equally. However,
it can be assumed that the optimal alignment accuracy
requires unequal feature weights because individual
features may be of different importance for the computa-
tion of the alignment path.

In the following subsection we propose a supervised
learning procedure that automatically finds the weights
for the features. Section 6.2 introduces different choices
of the training data for the learning algorithm and in
Section 6.3 different ways of handling silence within the
audio files are discussed. The proposed algorithm is
finally evaluated in Section 7.

6.1 Feature weighting procedure

Finding the feature weights that lead to an optimal
alignment can be regarded as a classical optimization
problem. The cost function can be any one of the error
measures from Section 4.1.2. Standard approaches such
as the gradient descent cannot be applied because it is not
possible to describe the iterative procedure of the DTW
as a mathematical function that can be differentiated.
Furthermore, other iterative optimization methods that
require many iteration steps are not easily applicable due
to the high computation time of the time warping.

The approach we used in this study is based on the
fact that the path of the ground truth will be found when
the distances on this path will be small compared to the
distance values in the rest of the distance matrix or at
least in the neighbourhood of the ground truth path.
Figure 6 illustrates the optimal case, in which all
distances on the ground truth path are 0 and all other
distances of the matrix are 1.

It will of course not be possible to find weights so that
all non-path values of the distance matrix will be set to 1
because large content-based similarities can also occur at
points not belonging to the ground truth path. The aim is
rather to minimize the distances on the path and to
maximize those in the vicinity of the path.

We denote the difference vector between two arbitrary
feature vectors forig(bi) and fstretch(bj) as Df(bi, bj). It is
calculated by

Dfðbi; bjÞ ¼ forigðbiÞ % fstretchðbjÞ
(( ((:

As explained above, we tried to map all difference vectors
on the true path to a small value—in the optimal case to
0—and to map the distances near the path to a high
value, defined as 1. This can be seen as a two-class
classification that assigns a given difference vector to one
of the classes ‘on the ground truth path’ (C1) or ‘not on the

Fig. 6. Distance matrix for an optimal alignment result: all
distances on the ground truth path amount to 0, all other
distances amount to 1.
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ground truth path’ (C2). Accordingly, the probability
P(C2jDf(bi, bj)) can be used as a distance measure for the
distance matrix. Linear Discriminant Analysis (LDA) as
a simple but robust classifier was chosen. LDA separates
the data by a hyperplane that minimizes the classification
error. An introduction to LDA can be found in Duda,
Hart, and Stork (2000).

6.2 Training data

The training data for the classifier can be generated by
means of the test set introduced in Section 4.1. The
difference vectors on the ground truth path were used as
the training data for class C1. For the selection of the
training data of class C2, four different possible choices
were investigated (see Figure 7): points in the immediate
vicinity of the ground truth path (set 1), points with a
distance of one point (set 2) and two points (set 3) in the
diagonal direction from the ground truth path, and
finally points randomly chosen from the distance matrix
on one side of the path (set 4).

Training set 1 has the potential of increasing the
contrast between the distances on the ground truth path
and distances very close to the path. A high contrast
between those directly adjacent points all along the
ground truth path will cause the DTW path to accurately
follow the ground truth path. However, it may not be
easily possible to increase the contrast between these two
groups of points, because distance vectors at adjacent
points are likely to take similar values and thus may not
be well separable by LDA. Hence, if the contrast is not
high enough, the DTW path may deviate from the

ground truth path and thus reduce the alignment
accuracy.

Training set 4 on the other hand aims at coarsely
increasing the distance values of the points off the ground
truth path with no special emphasis on points in the
vicinity of the ground truth path. This may not enhance
the accuracy of the alignment path but may lead to more
robust results. The remaining training sets represent a
compromise between these two approaches by choosing
points at greater distances from the ground truth path
than training set 1.

6.3 Silence

Pauses within the audio files pose a special problem for a
content based alignment algorithm because there is no
information by which the alignment could be accom-
plished. Furthermore, within pauses there are no points
in time which actually correspond to each other. Thus,
the best way for the alignment path within the distance
matrix would be to go straight from the preceding to the
subsequent non-pause content. This would require
another processing step to detect the beginning and the
end of a pause.

In this work, we do not propose methods for the
detection of start and end points of musical pause
sections. However, the influence of pause frames for the
training process of the classifier was investigated. A
pause frame was defined by a very simple criterion: audio
frames of the normalized audio signals with a power of
less than 760 dBFS were denoted as pause frames.

7. Evaluation

The evaluation was carried out on the two different data
sets introduced in Section 4. The time-streching data set
was used to learn the feature weights by the procedure
described in Section 6. We report the results on this data
set in Section 7.1. In order to verify that similar results
can be obtained on real recordings, we evaluated the
weighted features on the Chopin data set (cf. Section
4.2). These results are discussed in Section 7.2.

7.1 Time-stretching data set

The evaluation of the procedure described in Section 6
was accomplished in three steps. As a first evaluation
step, the influence of different training data sets (see
Section 6.2) on the alignment results was investigated.
Subsequently, we surveyed the consideration of
pause frames (see Section 6.3) during the training process
using the best training data set. In a third step, we
compared the results of each feature group to the results
when using the standardized feature vectors with equal
weights.

Fig. 7. Different choices for the training data. Points on the
ground truth path represent class C1, points for class C2 are
chosen in four different ways: in direct vicinity to the ground
truth, in a distance of one and two points in diagonal direction,
and randomly from one side of the ground truth path.
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As opposed to Section 5, we calculated the error
measures for each audio signal pair of the test set
individually. Ten-fold cross-validation was used to com-
pute the error measures: the test set for every feature
group was randomly divided into 10 equal folds, nine
folds were used for the training and the algorithm was
tested on the tenth fold.

For the evaluation of the different training data sets
and the pause frames, the results of all test signal pairs of
all feature groups were considered, whereas for the third
evaluation step the results were evaluated for each
feature group individually.

Table 2 shows the results of the different training data
sets. For each training data set, it displays the minimum,
median and maximum value of the dabs and the dmax per
test signal pair of all pairs. That means that e.g. for set 1
the smallest dabs that could be achieved by one of the test
signal pairs amounted to 2.82 ms and the maximum dabs
of a different pair to 179.1 ms.

Except for the maximum dabs and dmax among the test
signal pairs, the results showed only minor differences.
Set 4 yielded the lowest precision. For this set, the
minimum and the median of dabs were the highest among
the four sets. However, the maximum dabs and dmax lay
considerably below those of sets 1 and 2. Set 3 on the
other hand, the training set with a distance of two data

points from the ground truth path, showed the best
results. All of the displayed error values of this set
exhibited smaller amounts than any of the three other
sets.

Based on the usage of training set 3, Table 3 displays
the results of the training with and without pauses. The
results differed only slightly and dmax showed no
difference at all. The minimum dmax of 23.2 ms corre-
sponds to a deviation of only one audio frame at the
applied step size and sample rate. When comparing the
results of dabs only the median and the maximum are
slightly lower when pauses were considered during the
training. A possible reason for this might be that the
audio signal pairs of the test set originated from the same
file, so that the noise still had a similar quality and a
similar envelope so that an alignment might have been
possible even within pauses.

Figure 8 displays the alignment results of the proposed
feature combination procedure using training data set 3
and considering pauses during the training process. The
box and whisker plots enable comparing the results to
those that are obtained when vectors of equally weighted
features are used for the distance calculation. The upper
row shows the mean absolute errors, the lower row the
maximum errors, both with logarithmically scaled
vertical axes.

The results of the envelope feature group were
improved most noticeably by using the proposed
method. The median of mean absolute deviation dabs
was lowered from 50 ms to approximately 20 ms and the
maximum value of dabs was reduced from 454 to 91 ms.
The same applies to the dmax of this feature group: it was
decreased from 3.8 to 0.7 s. A right-tailed two-sample t-
test with a significance level of 5% showed that the mean
of both error measures is significantly lower when using
the proposed weighting method.

For the timbre features, smaller deviations from the
reference path can be observed. The maximum dmax was
decreased from 0.24 to 0.18 s and the already small
median of dabs was also slightly lowered to a value of
4.5 ms. However, for this feature group, the improve-
ments are insignificant at a significance level of 5%. The
mean of the maximum deviation is significantly lower
when choosing a significance level above 6.2%.

For the remaining two feature groups the improve-
ments are less obvious. While the median values nearly
stay the same, there seems to be a tendency of slightly
lower quartile boundaries. The changes for these two
groups, however, are statistically insignificant.

7.2 Chopin data set

For the Chopin data set alignments were computed for
all pairwise combinations of audio files. Given the 22
recordings for each of the music excerpts, a total number
of 462 pairs was considered. We evaluated all feature

Table 2. Results for the four different training data sets:
minimum, median and maximum of the dabs and dmax of the test
signal pairs. For comparison the last row displays the results
when using equally weighted features.

dabs dmax

set min median max min median max

1 2.82 ms 9.18 ms 179.1 ms 23.2 ms 75.5 ms 1.44 s
2 2.77 ms 8.34 ms 262.6 ms 23.2 ms 69.7 ms 2.07 s
3 2.73 ms 8.18 ms 91.5 ms 23.2 ms 69.7 ms 0.88 s
4 3.19 ms 9.32 ms 108.7 ms 23.2 ms 110.3 ms 0.95 s
eq. w. 2.80 ms 8.26 ms 454.38 ms 23.2 ms 92.9 ms 3.87 s

Table 3. Comparison of the training with and without pauses:
minimum, median and maximum of the dabs and dmax of the test
signal pairs. The last row shows the results when using equally
weighted features.

dabs dmax

pauses min median max min median max

with 2.73 ms 8.18 ms 91.5 ms 23.2 ms 69.7 ms 0.88 s
without 2.73 ms 8.61 ms 98.2 ms 23.2 ms 69.7 ms 0.88 s
eq. w. 2.80 ms 8.26 ms 454.38 ms 23.2 ms 92.9 ms 3.87 s
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groups individually as well as all combinations of two
feature groups on all audio signal pairs.

The results of this evaluation are shown in Table 4.
The table displays the percentages of deviations less than
0, 1, 2, 3, 5, 10, 25 and 50 frames as well as the average
error and the maximum error for each feature group and
each of the two excerpts. In particular the average error
and the maximum error enable a comparison between the

results of the time-stretching data set and the Chopin
data set.

Although generally a little bit higher than the results
of the time-stretching data set, a similar trend of the four
feature groups is recognizable: the onset and pitch
feature groups yield significantly more accurate align-
ment results than the envelope features. While the
average error of the onset and pitch features is in the

Fig. 8. Comparison of the alignment accuracy between the proposed procedure and vectors of equally weighted features.

Table 4. Results for the evaluation of the weighted features on the Chopin data set. The percentage of frames less or equal than
0, 1, 2, 3, 5, 10, 25 and 50 audio frames is displayed for the four feature groups and the combination of onset and pitch features for
the two music excerpts. The last rows show the average and maximum errors.

Error'

Cumulative percentage

Envelope Timbre Onset Pitch OnsetþPitch

Frames Etude Ballade Etude Ballade Etude Ballade Etude Ballade Etude Ballade

0 21.6 23.5 27.3 25.1 36.6 32.0 43.4 36.8 42.8 36.9
1 47.8 55.8 57.9 58.5 76.9 71.4 85.0 80.3 85.2 80.3
2 58.5 71.4 68.3 73.6 89.4 86.5 94.1 94.4 95.0 94.3
3 64.0 79.4 73.2 80.4 93.6 92.1 96.1 97.7 97.3 97.8
5 69.9 87.8 78.4 86.8 97.2 95.9 97.1 98.7 98.7 99.1
10 75.8 95.2 83.6 92.2 99.1 98.4 97.7 98.9 99.4 99.5
25 90.7 97.9 91.5 95.4 99.8 99.7 99.2 99.2 99.9 99.7
50 96.9 99.2 96.2 97.8 100.0 99.9 99.8 99.6 100.0 99.9
Average error [ms] 202.5 77.6 182.8 122.1 32.5 38.9 35.9 35.1 24.9 28.2
Maximum error [s] 4.36 5.71 7.72 7.04 3.08 4.54 2.80 5.85 1.87 3.66
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order of 35 ms, the envelope feature group exhibits
average errors of more than 77 ms. The maximum error
of all these three groups ranges from 2.8 to 5.85 s. This
value seems to be dependent on the audio content, as the
maximum error is generally lower for the Etude
compared to the Ballade. Somewhat surprising are the
results of the timbre feature group which seem to be
significantly worse than those of the other groups
regarding both average and maximum error. Here we
found that the algorithm specifically had problems with
certain parts in the recordings where musical motifs were
repeated several times. The algorithm aligned different
versions of these motifs resulting in comparably large
deviations from the ground truth.

We also evaluated the algorithm on all combinations
of two feature groups. This was accomplished by
summing the entries of the distance matrices of the
feature groups and computing the alignment path from
this combined matrix. The best result was obtained by
the combination of onset and pitch features which is
displayed in the two rightmost columns of Table 4. These
results are of the same magnitude as the results reported
by Dixon and Widmer (2005) who also use a feature that
takes into account both onset and pitch information (cf.
Section 2). Compared to this study, our procedure could
improve the average error of the Ballade by approx. 7 to
28.2 ms and the maximum error of the Etude by approx.
0.5 to 1.87 s.

8. Conclusion

In this paper, it was illustrated why the choice of suitable
features has to depend on the use case at hand.

We presented an approach to objectively measure the
quality of an alignment by constructing a ground truth
data set and defining several error measures. This
method enabled the evaluation and comparison of
different features and feature combinations.

It was demonstrated that various features beyond the
feature set of previous studies are suitable for the task of
audio-to-audio alignment. Precise alignments can occa-
sionally be achieved even by using one individual feature.
However, the use of multiple features makes the
algorithm more accurate and robust in general.

Furthermore, it was shown that applying different
weights to the individual features can in some cases
improve the alignment results significantly.

The results for the alignment accuracy are generally
quite satisfactory and seem to be sufficient for most of
the real world applications. However, in future work we
aim to investigate how the feature groups can be
combined for certain specific real world use cases.
Furthermore, we plan to evaluate our proposed method
on a data set of real recordings of various kinds of music
and with different instrumentations.
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