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ABSTRACT

The tonalness spectrum shows the likelihood of a spectral bin be-
ing part of a tonal or non-tonal component. It is a non-binary
measure based on a set of established spectral features. An eas-
ily extensible framework for the computation, selection, and com-
bination of features is introduced. The results are evaluated and
compared in two ways. First with a data set of synthetically gen-
erated signals but also with real music signals in the context of a
typical MIR application.

1. INTRODUCTION

A multitude of algorithms in the area of audio signal processing
focus only on sinusoidal components of a signal because noisy or
non-sinusoidal components may either have a negative impact on
the algorithm’s performance or they need to be processed sepa-
rately. Examples of such algorithms are

• analysis/synthesis systems based on sinusoidal signal mod-
els such as phase vocoders and audio codecs, for which the
audio quality directly depends on correct sinusoidal identi-
fication,

• systems for audio restoration, and

• audio analysis systems, especially pitch-based systems for
Music Information Retrieval (MIR), such as key detection,
chord detection, music transcription and source separation,
which all may benefit by suppressing noisy components.

When considering music signals it is a valid assumption that
sinusoidal components are evoked by tones and thus we will refer
to them as tonal components. Since the term "tonality" is com-
monly used to describe a harmonic or key context we use the term
tonalness (as an antonym of noisiness) for the amount of sinu-
soidality. The tonalness is a likelihood or a continuous score as op-
posed to the commonly used binary classification of components.
It is the authors’ believe that hard thresholding and the resultant
reduction of information should in general be avoided in the early
processing stages.

The detection of tonalness or the identification of sinusoidal
components is a common pre-processing step which might have
a major impact on a system’s overall performance. Nevertheless,
the systematic evaluation of this pre-processing step is frequently
missing in most publications. In those publications that deal with
the evaluation of tonalness measures, the evaluation is mostly done
with synthetic signals, raising the question if these results also ap-
ply to real-world signals and can be assumed to be application-
independent. Therefore, in this paper we will evaluate with syn-
thetic signals but set the focus on a real application and the pro-
cessing of music recordings.

The paper describes a formal way to develop, combine, select
and evaluate spectral features for the detection of tonalness in a
spectrum. After a short overview of the related work in the follow-
ing section we will define a generic feature framework in Sect. 3
and describe an exemplary set of features in Sect. 4. The evalu-
ation is performed with synthetic test data as well as with a key
detection algorithm — a typical MIR task — on real-world data
sets in Sect. 5.

2. RELATED WORK

As the variety of applications benefiting from a sinusoidal detec-
tion suggest, there have been numerous publications in this area,
of which only a subset can be presented in this paper. Many of the
features in Sect. 4 are partly based on such established methods.

Charpentier detected harmonic components based on the phase
spectrum. He evaluated the difference between the reassigned fre-
quency and the bin frequency and also expected the neighboring
bins of a peak to have the same phase as the peak itself [1]. Roebel
et al. used a similar phase based feature but they also employed the
peak’s energy location according to its group delay as well as the
bandwidth of a spectral peak for a classification into sinusoidal vs.
non-sinusoidal peaks [2].

Peeters and Rodet, as well as later Lagrange, presented an
amplitude-based measure computing the correlation between the
magnitude spectrum and the shifted spectrum of the employed
window function together with a phase-derived measure that com-
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pares the frequency of a peak with its reassigned (instantaneous)
frequency [3, 4].

A more simple amplitude based measure — which can be
found in nearly every publication in this area — is the search for
local maxima in the magnitude spectrum. For example, it has been
used in the context of speech separation by Parsons [5]. He also
used the peak’s symmetry, its proximity to the next peak as well
as the continuity of the frequency bin’s phase for the detection of
“peak overlaps”. Terhardt extended the concept of local maximum
by taking into account more distant bins, more specifically bins
with a distance of 2 and 3, to be a certain level lower than the
maximum itself [6].

Serra proposed to use a measure of “peakiness” of local max-
ima by comparing the bin magnitude with the surrounding local
minima; he also defined a frequency and magnitude range for de-
tecting peaks [7].

All of the publications listed above make a binary decision
whether a spectral bin is considered to be tonal or not. Kulesza
and Czyzewski presented an algorithm that tries to estimate the
likelihood of a bin being tonal [8] and referred to this as a scoring
classifier. This non-binary decision makes this algorithm probably
most similar to the one proposed here. Their approach combines
several features and uses a combination of heuristics and both bi-
nary and non-binary features to compute the resulting likelihood.

3. FRAMEWORK

The input samples x are split into frames of length NW and are
weighted by a window function w. The windowed signal is zero
padded to a length NFFT ≥ NW and the DFT yields the spectra
X(k, n) with frequencies k and frame indices n. The hop size
between two frames is NH.

A set of spectral features V = {v1, v2, . . . , vV} is extracted
from the spectrum. The design of the features is based on the
following assumptions for the input signal:

• it is a time-varying mixture of tonal and non-tonal compo-
nents

• it has an undefined number of voices (polyphony)

• the spectral envelope of both tonal and non-tonal compo-
nents is unknown

• it is stationary for at least a minimum length of time

• its tonal components are deterministic, i.e. their phase will
not change erratically between the points of observation

Each feature by itself should be simple to compute as well as sim-
ple to understand and should focus on one individual property or
aspect of a tonal component.

Figure 1 gives an overview of the feature computation and
combination process which shows some similarity to a simplified
Radial Basis Function Network [9]. First, each feature vi is the
input of an exponential function ϕ(·). Its output

ti(k, n) = ϕ (vi(k, n)) = exp
(
−εi · vi(k, n)2

)
(1)

will be referred to as the specific tonal score ti(k, n) ∈ [0, . . . , 1].
This score can be interpreted as a measure of likelihood of bin k in
frame n representing a tonal component with respect to feature i.
The normalization constant εi will be explained later in Sec. 4.2.
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ϕ

ϕ
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t1
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Π T

Figure 1: Processing of individual feature outputs vi by exponen-
tial function ϕ finally leading to the combined tonalness T .

Finally, these specific tonal scores are combined to yield the over-
all tonalness

T (k, n) =

(
V∏

i=1

ti(k, n)

) 1
η

, η ∈ [1, . . . , V ]. (2)

The exponent η can be chosen in the range [1, . . . , V ] to continu-
ously adjust the mean between a simple product and a geometric
mean, respectively.

4. FEATURE SET

The feature set described below mainly comprises various estab-
lished features from several publications and does not claim to be
exhaustive. It has an exemplary character and it is easy to extend
the feature set with additional features or to modify the presented
ones.

4.1. Detailed Feature Description

Since the feature output vi(k, n) is in turn the input of the ex-
ponential function in Eq. (1), the direct feature output is zero for
tonal and maximum for non-tonal bins. Example plots of some of
the resulting tonal scores are shown in Fig. 2.

4.1.1. Amplitude Continuity

The amplitude of a tonal bin is expected to be constant for several
time frames. Thus, the amplitude change at a bin is a measure of
tonalness and the feature

vACT(k, n) =

∣∣ |X(k, n)| − |X(k, n− 1)|
∣∣

|X(k, n− 1)| (3)

is defined as the relative bin amplitude difference between two
neighbouring magnitude spectra.

4.1.2. Frequency Continuity

A similar constraint can be applied to the change of the instanta-
neous frequency fI of a bin over time:

vFCT(k, n) = |fI(k, n)− fI(k, n− 1)| . (4)

We choose the frequency reassignment operator introduced by Auger
and Flandrin [10] for our implementation because its accuracy is
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(a) Amplitude Continuity
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(b) Frequency Coherence
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(c) Amplitude Threshold
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(d) Peakiness

Figure 2: Sample plots of some specific tonal scores when processing a recorded piano chord. The magnitude spectra are plotted in black
and the tonal scores are overlaid with a light grey line.

hop size independent. The reassigned frequency fI is the bin fre-
quency 2πk minus a frequency offset ∆ω:

∆ω = =
{
XD(k, n)X∗(k, n)

|X(k, n)|)

}
(5)

fI(k, n) = 2πk −∆ω ·NW. (6)

XD(k, n) is the spectrum of the current time frame weighted by
the time derivative of the window function and X∗(k, n) is the
complex conjugate of X(k, n).

Note that both the Amplitude Continuity and the Frequency
Continuity will fail to work reliably in the case of strongly mod-
ulated input signals. A typical example for such a modulation is
vibrato. In order to improve results with such signals, tracking of
the sinusoidal trajectories would be necessary.

4.1.3. Frequency Deviation

Due to spectral leakage, bins close to a tonal component should
have the same phase and thus the same instantaneous frequency as
the tonal bin itself. Therefore, a feature

vFD(k, n) =
∣∣∣fI(k, n)− fI(k − γ, n) +

fI(k, n)− fI(k + γ, n)
∣∣∣ (7)

is defined measuring the difference of instantaneous frequencies
between a center and two neighbouring bins. The distance to the
surrounding bins is given by the factor γ = NFFT/NW, taking into
account the degree of spectral interpolation.

4.1.4. Frequency Coherence

Another way to utilize the reassigned frequency is to derive a tonal-
ness criterion directly from the frequency offset ∆ω between the
bin frequency and the instantaneous frequency:

vFC(k, n) = |∆ω ·NW| . (8)

4.1.5. Amplitude Threshold

Since the tonal components are expected to be salient and to have
more energy than noisy parts, a magnitude threshold can be ap-
plied to increase the likelihood of components above the threshold
and decrease the likelihood of other components accordingly. This
is achieved by the ratio

vAT(k, n) =
rTH(k, n)

|X(k, n)| (9)

in which the smoothed magnitude spectrum

rTH(k, n) = α · rTH(k − 1, n) + (1− α) · |X(k, n)|

serves as an adaptive threshold and is computed with a single pole
low pass filter. The filter is applied over the frequency in both the
forward and the backward direction to compensate for group delay.
The filter coefficient α has been adjusted empirically.
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4.1.6. Peakiness

Declaring the local maxima in the magnitude spectrum to be can-
didates for being tonal is a rather self-evident step in spectral anal-
ysis. A non-binary implementation of a local maximum feature is
a measure of peakiness

vPK(k, n) =
|X (k −m,n) |+ |X (k +m,n) |

|X(k, n)| , (10)

which is the ratio between the sum of two surrounding bins and the
center. The distance m should roughly correspond to the spectral
main lobe width of the window function.

4.1.7. Extended Peakiness

An extended peakiness measure also includes more distant bins:

vEPK(k, n) =

3∑
s=1

|X(k − 2γs, n)|+ |X (k + 2γs, n) |

|X(k, n)| . (11)

It is the relation of the sum of the magnitudes of the three sur-
rounding bins to the magnitude of the center bin. The distances
are multiples of 2γ = 2NFFT/NW to make this feature indepen-
dent of the degree of spectral interpolation.

4.1.8. Time Window Center of Gravity

Similar to the frequency reassignment operator from Eq. (5), Auger
and Flandrin also defined a time reassignment operator [10]

∆t = <
{
XT(k, n)X∗(k, n)

|X(k, n)|

}
, (12)

which gives the time offset of a certain frequency relative to the
center of the current time frame. In this caseXT(k, n) is the spec-
trum retrieved from the time samples weighted by a time weighted
window.

The actual feature

vTCG(k, n) =

∣∣∣∣∆t ·
1

NW

∣∣∣∣ (13)

is the time deviation weighted by the window size. This feature
can also be interpreted as a transient detection which categorizes
transient events as not being sinusoidal and has already been used
as in this area, e.g. by Röbel [11].

4.1.9. Random Feature

In order to have a base line for the evaluation and to verify that the
presented features will result in a gain of information the random
feature vRND is introduced. The feature output is Rayleigh dis-
tributed and normalized in the same way as the other features. We
expect the resulting random tonal score to perform worse than all
other tonal scores in the following evaluation.

4.2. Feature Normalization

The individual features have different scaling and different cumu-
lative distribution functions. This requires normalization of all fea-
tures with the normalization constant εi, compare Eq. (1), to avoid
favouring specific features when combining them.
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Figure 3: Relative frequency distributions after normalization.
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Figure 4: Cumulative distribution functions after normalization.

We choose to normalize the extracted features in a way that
the median of the feature output yields a specific tonal score of
0.5. To compute εi, the individual feature outputs are analyzed
while processing a database of music files (the ALERC data set is
later described in more detail in Sect. 5.2.1). For each feature the
median value mvi(n) is calculated per frame and then the mean
mvi over all frames and files is taken. Rearranging Eq. (1) and
setting the target tonal score to 0.5 gives

εi =

√
log (1/0.5)

mvi

(14)

to normalize the feature output. After normalization all features
have similar relative frequency distributions as shown in Fig. 3.
Note that the cumulative distribution functions all intersect the
same 0.83/0.5 point in Fig. 4.

5. EVALUATION

The evaluation of algorithms for the detection of tonal components
is problematic due to the difficulties of finding a proper ground
truth. It is not possible to annotate a large data set of real-world
signals with appropriate labels when they are non-trivial complex
mixtures of multiple sources. Therefore, practically all approaches
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Figure 5: Magnitude spectrum of the synthetic test signal with ad-
ditive white noise and the overlayed mask (dashed line). The grey
bars mark the expected sinusoidal peak centers.

mentioned in Sect. 2 have been evaluated with synthetic test sig-
nals, usually composed of sinusoids and noise. Using these con-
structed signals allows to annotate tonal and non-tonal components
accurately and thus enables detailed evaluation, but it is unclear
whether the results can be generalized to real-world signals.

Therefore, we evaluate the features in two variants: first in
the established way with synthetic test signals and second by mea-
suring the performance of an MIR algorithm with and without a
tonalness pre-processing step.

The sampling rate was 44.1 kHz for all test cases and the fol-
lowing STFT parameters were chosen:
NW = 8192, NFFT = 2NW = 16384, NH = NW/8 = 1024.

5.1. Synthetic test cases

A test signal has been generated containing various combinations
of tones with different amplitudes. Each tone consists of a fun-
damental frequency and 32 harmonics with an exponentially de-
caying spectral envelope. All tones or chords have zero attack and
exponential decay times followed by a short gap of 0.2 s. As the
synthesis was done by a simple sum of sinusoidals it was easy to
build a spectral mask for all active frequencies per frame. The
width of the spectral mask should roughly correspond to the main
lobe width of the window function and was determined empiri-
cally. An example mask is shown in Fig. 5.

The assumption is that the tonalness should be close to zero
outside of the mask and close to one inside. Furthermore, it is
assumed that it reaches its maximum value at the center of the
masked regions. When X̂(k, n) = X(k, n)·T (k, n) is the magni-
tude spectrum weighted by the tonalness, we expect the non-tonal
components to be attenuated while the tonal components remain
untouched.

In order to evaluate the tonalness we define the Sinusoidal
Peaks to Noise Ratio (SPNR)

SPNR = 10 log10

(∑
k∈P |X̂(k, n)|2∑
k∈N |X̂(k, n)|2

)
, (15)

with P denoting the set of indices of center bins of a masked region
and N denoting the indices of all bins outside of the mask. In other
words, the SPNR gives the ratio between the energy at the peak
locations and the energy outside of the sinusoidal main lobes. The
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Figure 6: Gain of the Sinusoidal Peaks to Noise Ratio (SPNR) with
the synthetic test signal in dependency of the noise level.

weighted magnitude spectrum should thus have a higher SPNR
than the non-weighted magnitude spectrum.

White noise with different levels was added to the described
test signal and the SPNR was measured before and after weight-
ing the spectra with the specific tonal scores. The resulting SPNR
gains are plotted in Fig. 6. Using the specific tonal scores the
SPNR is increased for all features. Only the random feature slightly
degrades the SPNR as expected.

5.1.1. Sequential-Forward Selection

All individual tonal scores potentially increase the SPNR and it is
of interest to see if a combination of tonal scores would further
improve the results. To find the best feature combinations we have
implemented a Sequential-Forward Selection strategy [12]. This
is an iterative process by which first the best performing single
feature is selected and then combined with all other individual fea-
tures. The feature pair which improves the SPNR most is selected
and then combined with the other remaining features. This selec-
tion process is carried out with the simple product as well as with
the geometric mean feature combination (see Eq. (2)).

Figure 7 plots the gain of the SPNR values depending on the
number of features chosen with the forward selection strategy and
Table 1 shows the corresponding selected feature names for an in-
put noise level of −40 dBFS. In general, one can see that it is
possible to clearly improve the performance of the best individ-
ual feature by a combination with another feature. Also utilizing
a simple product is far more effective than the geometric mean.
The latter only shows a slight increase in SPNR and stagnates af-
ter 3 features, whereas the product can increase the SPNR up to
a combination of 7 or 8 features. During the selection process, a
combination with the random feature always degraded the SPNR
and therefore, it has never been selected.

The order of the selected features is unfortunately not fixed
and depends on the input noise level as well as the combination
type (geometric mean or simple product). But we can observe the
Amplitude Threshold and Frequency Continuity being among the
first three selected features most of the time.
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Figure 7: SPNR gain depending on the amount of combined fea-
tures for different input noise levels.

5.2. Real-world application

The results above indicate that all features are able to emphasize
the sinusoidal or tonal parts of a spectrum and, compared to the
random feature, it is evident that the tonalness includes a gain of
information. In the second evaluation it is investigated whether
these results also apply to real-world music signals and real-world
applications.

Due to the difficulties of annotating tonal components men-
tioned above, an indirect approach of evaluation by using a key
detection algorithm is proposed that allows the usage of real mu-
sic signals as input data. Since a simple key detection algorithm
depends on tonal components and will perform better with sup-
pressed non-tonal components, the key detection performance can
be evaluated and compared with and without utilizing the tonal-
ness. This has the advantage that on the one hand the annotation
of ground truth data is comparably easy and leads to a simple but
reliable measure, and on the other hand the tonalness estimation is
evaluated in the context of an everyday MIR application.

5.2.1. Key Detection

The algorithm implemented for detecting the musical key is kept
as simple as possible in order to avoid too many processing steps
between the evaluation metric and the tonalness spectrum itself.

First, the pitch chroma vector per block is computed. This
is a twelve-dimensional histogram-like octave-independent vector
showing the “strength” of the 12 semitone classes (C, C], D, . . .,
B). It is computed by converting the spectrum to semi-tone bands
and summing the energy of all bands with the distance of an oc-
tave [13]. Second, the average chroma vector per file is computed
and finally the (Euclidean) distance between the extracted chroma
vector and the shifted key profiles (acc. to Krumhansl [14]) is de-
termined. The minimum of the 24 computed distances (12 major
and 12 minor keys) identifies the most likely key of this piece.

There are, of course, more refined approaches to key detection
which lead to better accuracies, see e.g. [15], but in this case we
are only interested in comparing key detection results for different

Combination SPNR gain

Prod.
AT 2.6 dB
AT, FCT 4.7 dB
AT, FCT, PK 6.1 dB
AT, FCT, PK, EPK 7.3 dB
AT, FCT, PK, EPK, FC 8.3 dB
AT, FCT, PK, EPK, FC, TCG 9.0 dB
AT, FCT, PK, EPK, FC, TCG, FD 9.5 dB
AT, FCT, PK, EPK, FC, TCG, FD, ACT 9.5 dB

Geom. mean
AT 2.6 dB
AT, FCT 3.1 dB
AT, FCT, FD 3.3 dB
AT, FCT, FD, TCG 3.6 dB
AT, FCT, FD, TCG, EPK 3.6 dB

Table 1: SPNR gain for different feature combinations and an input
noise level of −40 dBFS.

inputs of the pitch chroma vector calculation.
Two data sets have been used to evaluate the key detection rate.

The first one has been previously used for the evaluation of a key
detection system [16]. We will refer to this data set as ALERC;
it consists of 145 full length songs in the pop/rock category and
65 songs in the jazz/folk category; all pieces have been manually
annotated.

The second data set, used for validation, is the well known
genre classification data set that we will refer to as GTZAN [17].
It has been manually annotated with key labels for the purpose of
this evaluation. This data set consists of 1000 song snippets with a
length of 30 s and is divided in 10 genres with 100 songs per genre.
The classical genre has not been annotated and of the remaining
categories 63 songs were not labeled because they contained a key
modulation or were particularly difficult to annotate for other rea-
sons. This results in a test set of 837 song snippets from the genres
blues, country, disco, hiphop, jazz, metal, pop, rock, and reggae.

5.2.2. Individual tonal scores

The key detection is run with the unweighted magnitude spectra
and the spectra weighted by the tonalness prior to the chroma vec-
tor calculation. For the unweighted spectra, the detection accuracy
was 55.7 % for the ALERC data set and 40.4 % for the GTZAN
data set. The achieved detection accuracy gains for the weighted
spectra are visualized in Fig. 8 for both data sets.

Most features significantly improve the key detection rate while
the random score has nearly no impact on the results. Only the
Frequency Coherence feature decreased the accuracy on both data
sets and the Frequency Deviation yielded a relatively low gain.
The best individual feature on the GTZAN data set is the Extended
Peakiness with an improvement of 4.0 %. The simple Peakiness,
Amplitude Threshold and Time Window Center of Gravity produce
results in the same range and only Frequency Continuity and Am-
plitude Continuity did not perform as well. With the ALERC data
set, a maximum gain of 7.6 % is found with the Time Window Cen-
ter of Gravity; the remaining features are all a bit lower but still in
a similar range. Interestingly, Frequency and Amplitude Continu-
ity worked far better on this data set compared to the results from
the GTZAN data set.
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Figure 8: Key detection accuracy gains by the use of tonalness
weighted spectra for the GTZAN and ALERC data set.

It is noteworthy that the absolute detection accuracy on the
GTZAN data set is lower than on the ALERC data set. By in-
vestigating the key results per genre, it was possible to identify
the reason in a remarkably bad performance mainly in the blues,
hiphop, and jazz genres. A possible explanation is the specific har-
monic structure in the blues and jazz genres as well as the lesser
amount of pitched content in the hiphop genre. Furthermore, the
audio quality of the GTZAN dataset may influence the results as
it includes, amongst others, radio recordings and files with qual-
ity degradations, while the ALERC data set exclusively consists of
high quality CD recordings.

5.2.3. Sequential-Forward Selection

The same Forward Selection strategy as described in Sect. 5.1.1
has also been applied to the key detection evaluation and the best
performing combinations are shown in Table 2. Again it is possi-
ble to improve the performance of the best individual feature by
a combination with another one. However, combinations of more
than 3 features did not result in further improvement and some-
times even slightly decreased the detection accuracy.

The product combination of Time Window Center of Gravity,
Frequency Continuity and Amplitude Continuity yields an overall
gain of 10.5 % on the ALERC data set; this is 2.9 % better than the
best single feature on this data set. The best geometric mean com-
bination is Time Window Center of Gravity, Frequency Deviation
combined with Peakiness and improves the best individual tonal
score by 1.5 %.

A similar behavior can be observed with the GTZAN data set,
although the overall gain is lower and the maximum accuracy is
already achieved by only using two features. A product combina-
tion of the Extended Peakiness and Time Window Center of Gravity
results in a gain of 4.9 % and the geometric mean combination of
Extended Peakiness and Amplitude Continuity is 4.5 % better than
the unweighted spectra.

# Combination ALERC GTZAN

Product
1 TCG 7.6 % 3.5 %
2 TCG, FCT 9.1 % 4.2 %
3 TCG, FCT, ACT 10.5 % 3.6 %

Geom. mean
1 TCG 7.6 % 3.5 %
2 TCG, FD 8.6 % 3.8 %
3 TCG, FD, PK 9.1 % 3.7 %

(a) ALERC data set

# Combination GTZAN ALERC

Product
1 EPK 4.0 % 4.8 %
2 EPK, TCG 4.9 % 8.1 %

Geom. mean
1 EPK 4.0 % 4.8 %
2 EPK, ACT 4.5 % 7.2 %

(b) GTZAN data set

Table 2: Achieved key detection accuracy gains by Sequential-
Forward feature combination.

5.3. Discussion

Summarizing the evaluation is rather difficult because there is no
best single feature or outstanding feature combination that excels
in all evaluation tasks. From the results of the synthetic evaluation
it is proven that all features are able to successfully detect tonal
components of a signal. But these results could not be generalized
to the key detection task where most of the features performed dif-
ferently. The Frequency Coherence, for example, was en par with
the other features for synthetic test signals but slightly decreased
the key detection rate in the context of real-world signals.

When it comes to the combination of features the results from
both the synthetic and the real-world task indicate that this can
drastically improve the performance. Although we cannot pick a
single superior combination, the results improve most if features
dealing with diverse aspects of tonalness are combined. The Peak-
iness, for example, is solely based on information from the current
magnitude spectrum while the Frequency and Amplitude Continu-
ity take into account changes over time. Furthermore, the Time
Window Center of Gravity is based on the complex spectrum con-
sidering the phase and the amplitudes of the signal.

The combinations with a simple product always lead to better
results than with the geometric mean. This seems reasonable in
our evaluation environment as the geometric mean is just a non-
linear distortion of the simple product and increases the weight of
bins with low tonalness. Thus the geometric mean will result in
less damping of frequency bins with an uncertain tonalness.

A preliminary Principal Component Analysis (PCA) with the
tonal scores retrieved from the ALERC data set revealed that the
8 features span a space of roughly 2-3 independent dimensions.
This matches the results from the key detection task, where com-
binations of up to 3 features were able to improve the detection
accuracy.
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6. SUMMARY

In this paper, a framework and a set of spectral features to estimate
the tonalness of spectral bins was presented. The tonalness indi-
cates the likelihood of a spectral bin being tonal. We investigated
a set of simple and established features to derive tonal scores and
evaluated the tonalness estimation with individual features as well
as with feature combinations. The evaluation was conducted with
both, synthetic signals and real music in the context of a typical
MIR application. The evaluation with the real-world data (key de-
tection) shows a gain in accuracy of more than 10 % on the ALERC
data set and approximately 5 % on the GTZAN data set for the best
feature combinations. The differences in the evaluation results be-
tween the synthetic and the real-world data set indicate that the
findings from theoretic evaluation procedures cannot be directly
transferred to an application. Instead, it is necessary to perform
the evaluation with real-world data and to carefully select from a
diverse set of features specifically for the intended application.

The proposed tonalness spectrum is efficient to compute and
the framework is easily extensible with more powerful and possi-
bly application specific features. Examples include further features
from [2] or more complex amplitude based measures like the cor-
relation between magnitude spectrum and window function [3, 4]
as well as high order auto-regressive modelling [18]. The applica-
tion of post-processing options such as partial tracking [19, 20, 21]
also can be expected to improve results.
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