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ABSTRACT
We present a new algorithm for real-time noise reduction of audio signals. In order to derive the noise
reduction function, the proposed method adaptively estimates the instantaneous noise spectrum from an
autoregressive signal model as opposed to the widely-used approach of using a constant noise spectrum
fingerprint. In conjunction with the Ephraim and Malah suppression rule a significant reduction of both
stationary and non-stationary noise can be obtained. The adaptive algorithm is able to work without user
interaction and is capable of real-time processing. Furthermore, quality improvements are easily possible by
integration of additional processing blocks such as transient preservation.

1. INTRODUCTION
Background noise is a degradation common to all
analogue measurement, storage and recording sys-
tems for speech or music. It originates from ir-
regularities in the storage medium, ambient noise
from the recording environment and electrical cir-
cuit noise. Analogue recordings typically show noise
characteristics which can be assumed to be station-
ary and white. However, many early 78rpm shellac
recordings as well as tape recordings may have a per-
ceptible non-stationary coloured noise characteristic.

The noise can vary considerably within each revolu-
tion of the playback system [1]. Hence, a wide range
of applications such as restoration of old recordings,
teleconferencing, in-car cabin communication sys-
tems or automated speech recognition services ben-
efit from efficient noise reduction.

Noisy audio signals are usually described using the
following additive noise model

y(k) = x(k) + n(k) , (1)
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where y(k) is the noisy signal, x(k) the clean sig-
nal, n(k) the noise signal and k the time index. Us-
ing the linearity of the short-time Fourier transform
(STFT), Eq. (1) can equivalently be formulated as

Y (m,n) = X(m,n) +N(m,n), (2)

where m represents the frequency index and n the
block index. The spectrum of common audio sig-
nals can be assumed to be quasi-stationary over a
time window of at least 20 ms [1]. By applying a
special noise reduction function to the noisy signal
block, the clean STFT-block X̂(m,n) can be esti-
mated with

X̂(m,n) = f(Y (m,n)), (3)

where f(·) is often replaced by a linear filter function
H(m,n)

X̂(m,n) = H(m,n) Y (m,n). (4)

2. RELATED WORK

2.1. Noise reduction functions
Many possible variants to derive function f(·) have
been proposed in the literature. The most promi-
nent noise reduction methods are Wiener filtering
[2], spectral subtraction [3] and the Ephraim and
Malah filter [4], where typically only the magnitude
of Y (m,n) is treated and the phase spectrum is left
untouched.

Wiener filter
The Wiener filter modifies the magnitude spectrum
of the noisy input signal according to an estimate
of the signal-to-noise ratio at each frequency. It
requires estimates of the power spectra (or equiva-
lently the correlation matrices) of signal and noise
[5]. The Wiener noise reduction function can be
written as

H =

{
|Y |2−SN
|Y |2 , |Y |2 > SN

0, otherwise,
(5)

where SN is the current power spectrum of the so-
called noise fingerprint (see Sect. 2.2) and the block
and frequency index n and m were dropped for con-
venience.

a)

n

Noise power

n

b)

Fig. 1: a) Signal power in bin m before spectral
subtraction plotted over time-block index n; b) Sig-
nal power in bin m after spectral subtraction plotted
over time-block index n [6, p. 208]

Spectral subtraction
The spectral subtraction was first proposed in [3].
By means of this method an amount of noise, equal
to the root mean-squared noise level, is subtracted
from the spectral amplitude in each frequency bin
as followed

H =

{
|Y |−
√

SN
|Y | , |Y |2 > SN

0, otherwise.
(6)

Although these methods can provide a significant re-
duction of background noise for audio signals, there
are several unfavorable properties in practical appli-
cations. The main drawback is the appearance of so-
called musical or tonal noise. Due to the above men-
tioned noise reduction functions randomly spaced
spectral residuals can remain after application of the
noise reduction function during strong fluctuations
of the STFT magnitude |X(m,n)| of the audio signal
in noisy areas (Fig. 1). These residual components,
occurring at random frequencies, comprise a percep-
tually annoying musical noise [6, p. 208].

Ephraim and Malah filter
The Ephraim and Malah method is known to pro-
duce a lesser amount of musical noise since the noise
reduction function depends to a lower extent on time
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variations of the short-time spectrum of the audio
signal [6, 1].

The calculation of the suppression rule uses an a-
priori SNR

ξ(m,n) =
SY (m,n)
SN (m,n)

(7)

and an a posteriori SNR

γ(m,n) =
|Y (m,n)|2

SN (m,n)
. (8)

Applying an auxiliary vector ρ(m,n) with

ρ(m,n) =
ξ(m,n)

1 + ξ(m,n)
γ(m,n) (9)

the Ephraim and Malah noise suppresion rule is ob-
tained by

H(m,n) =

√
πρ(m,n)

2γ(m,n)

[
(1 + ρ(m,n)) I0

(
ρ(m,n)

2

)
· · ·

+ ρ(m,n)I1

(
ρ(m,n)

2

)]
e
−ρ(m,n)

2 , (10)

where Ii(·) describes the i-th modified Bessel func-
tion.

2.2. Noise spectrum estimation
All described methods assume a precalculated fin-

gerprint. This noise fingerprint usually has to be
manually chosen from ”silent” or noise-only sections
where no music is playing [14, 1, 12]. These ar-
chitectures are not capable of real-time processing
because they need a user interaction. They per-
form well as long as the noise can be assumed to
be stationary and segments of the audio signal with
noise-only characteristics can be reliably identified
and pre-selected. However, non-stationarities of the
noise process or inaccuracies during the noise esti-
mation can cause both insufficient noise reduction
and unintended suppression of signal components.

There are several methods described in the literature
to estimate the noise spectrum adaptively without
user interaction.
Noise spectrum can be determined or updated dur-
ing pauses without user interaction by using voice
activity detection algorithms [7, 8].

Martin et al. described an estimation of the power
spectral density of non-stationary noise without us-
ing a voice activity detection [9]. Instead, spectral

minima in each frequency band are tracked with-
out any distinction between speech and non-speech
phases and used for the estimation of an adaptive
noise spectrum estimation. However those estimates
are not suitable for audio signals with dense spectra.

Yeh et al. presented an algorithm for estimation of
colored noise level in audio signals based on the as-
sumptions a) that the noise envelope varies slowly
with frequency and that b) the magnitude of the
noise peaks obeys a Rayleigh distribution [10]. The
derived noise level can then be used for the noise
reduction.

3. PROPOSED DENOISING METHOD
To reduce both stationary and non-stationary noise
the noise reduction method shown in Fig. 2 is pro-
posed. After a short overview, the individual pro-
cessing block will be discussed in detail in the fol-
lowing section.

In a first step the STFT is calculated and the in-
stantaneous noise spectrum is estimated by using an
autoregressive (AR) model. Therefore, only the cur-
rent estimation of the spectral envelope of the noise
will be considered during the calculation of the cur-
rent noise reduction function. No pre-selected finger-
print is required. In a second step the noise reduc-
tion function is calculated using an approximation of
the Ephraim and Malah suppression rule introduced
by Wolfe et al.

H(m,n) =

√
ξ(m,n)

1 + ξ(m,n)

(
1 + ρ(m,n)
γ(m,n)

)
. (11)

While yielding similar noise reduction gains, this ap-
proximation is much more efficient to compute [11].

Preliminary listening test results indicate that ad-
ditional smoothing over time of the noise reduction
function with

H(m,n) = (1− α)H(m,n) + αH(m,n− 1), (12)

where 0 < α < 1, can reduce the perceived amount
of musical noise.

To preserve transient signal components a transient
detection is carried out in combination with a preser-
vation rule to control the noise reduction function.
Finally, the denoised amplitude spectrum and the
untreated phase spectrum are recomposed.
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Fig. 2: Block diagram of the noise reduction scheme.

3.1. Adaptive Noise Spectrum Estimation
As pointed out in Sect. 2.2 an adaptive noise spec-
trum estimation is desirable. Using a signal model
such as the autoregressive model (AR) the noise
spectrum of the current frame can be estimated. The
AR-model describes a time-discrete signal x(k) as
the output of an all-pole filter

x(k) =
M∑
i=1

aix(k − i) + e(k), (13)

whose input e(k) is white noise. Solving the equation
for e(k) and using the z-transform yields

X(z)A(z) = E(z), (14)

where A(z) = 1 − a1z
−1 − · · · − aMz−M is an all-

zero filter of M -th order. By considering x(k) as
input, Eq. (14) can be interpreted as a FIR-filter as
presented in Fig. 3.

A standard approach to estimate the AR parameters
is the Levinson-Durbin recursion (see e.g. [13]). The
Fourier transform of this impulse response can then

z−1 z−1 z−1
x(k)

· · ·

· · ·

e(k)

−a0 −aM−a1

Fig. 3: AR-model as a FIR-filter

be interpreted as an estimation of the noise spec-
trum of the current block. By means of a frame-
to-frame processing only the current noise spectrum
estimation will be used for the update of the noise
reduction function.

3.2. Transient Preservation
Transients are short-duration signal components
that occur during attack phases of musical sounds
or spoken words. They contain a high degree of
non-periodic components and an increased magni-
tude of higher frequencies. Linear prediction models
such as the AR-model are well suited for approx-
imation of harmonic audio signals [14]. However,
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it is not possible to predict transient signal compo-
nents with fast attacks and decays. In the context of
the proposed noise reduction method this can cause
an unintended suppression of transients. To pre-
serve those signal components a transient detection
in combination with a preservation rule is formulated
to control the noise reduction function.

attack

transient decay

onset

Fig. 4: Example of a transient

Widely used yet comparably simple models for the
detection of transients have been summarized by
Bello et al. [15]. Many of them use the differ-
ence between adjacent STFT frames using magni-
tude and/or phase spectrum. At the beginning of
a transient an increase of signal energy and a sud-
den change of the phase spectrum can be expected.
Therefore, the euclidean difference between adjacent
spectra can be used for detecting transient signal
components with

Γ(m,n) =
{
|X̂(m,n)|2 + |X(m,n)|2 · · ·

−2|X̂(m,n)||X(m,n)| cos(dφ̃(m,n))
}1/2

, (15)

where

X̂(m,n) = |X(m,n− 1)|edφ̃(m,n) (16)

describes the predicted spectrum of the current
frame and

dφ̃(m,n) = princarg[φ̃(m,n) · · ·

−2φ̃(m,n− 1) + φ̃(m, k − 2)] , (17)

describes the unwrapped phase and princarg[·] the
principal argument-function, which maps the phase

on the interval [−π, π]. By calculating the median of
Γ(m,n) over all bins and normalising by the block
size a transient preservation factor wt(n) is calcu-
lated by applying a certain function

wt(n) = f (median (Γ(m,n))) , (18)

where f(·) could be wt(n) = 1 −median (Γ(m,n)).
Using this factor the smoothing coefficient α in
Eq. (12) can be controlled. Furthermore the cur-
rent noise spectrum estimation SN (m,n) can e.g. be
scaled by wt(n) to reduce the amount of noise re-
duction during the presence of a transient.

3.3. Algorithm summary
Combining all presented methods the proposed

noise reduction method is obtained as shown in Fig.
2. The algorithm includes the following steps:

1. Calculate STFT of current block

2. Noise spectrum estimation using the Levinson-
Durbin recursion

3. Calculation of transient factor wt(n) and con-
trol of noise reduction function

4. Noise reduction using the Ephraim and Malah
filter

5. Combine denoised magnitude and untreated
phase

4. EVALUATION
The proposed algorithm was compared to the stan-
dard Ephraim and Malah noise reduction function
using a preselected noise fingerprint. To evaluate the
performance of the noise reduction methods, techni-
cal as well as perceptive evaluation criteria have to
be considered.

4.1. Technical evaluation
An easy and robust technical measure is the signal-
to-noise ratio (SNR). Depending on the input-SNR
a certain SNR-gain can be measured after applying
the denoising function to the degraded signal. For
this technical evaluation measure a test set-up was
prepared by artificially degrading diverse wide-band
music signals at 44.1 kHz and 16 bit with a length of
about 10 sec.
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Fig. 5: Averaged SNR-gains for both experiments; x-axis input-SNR, y-axis SNR after noise reduction

In a first experiment gaussian white noise at dif-
ferent signal-to-noise ratios was added to the audio
signals. In a second experiment the typical influ-
ence of historical recording system on the stationar-
ity of the noise process was simulated by applying
an amplitude modulated white noise with modula-
tion frequency of 78/60 Hz to the audio signal. The
input-SNR varied in both experiments from 5 to
25 dB and the processing was done with a block size
of 2048 samples, a Hann window and an overlap of
about 1024 samples.
Figure 5(a) shows the SNR-gain for the first experi-
ment. For almost the whole input-SNR range an in-
creased SNR-gain can be observed for the proposed
algorithm, with the maximum difference of about
3 dB at an input-SNR of 15 dB. For amplitude mod-
ulated noise (Fig. 5(b)) a decrease of about 2-4 dB of
the SNR-gain for the standard Ephraim and Malah
noise reduction function based on a precalculated
noise fingerprint can be observed, while the SNR-
gain for the proposed method is only slightly lower
than in the stationary case.

4.2. Perceptive evaluation
The described technical evaluation method does not
necessarily correlate with the perceived amount of

software 3

software 2

software 1

proposed algorithm

poor moderate excellent

quality of noise reduction

µ̄ [µ̄± σ̄]

Fig. 6: Boxplot of the rated quality of noise reduc-
tion.

noise reduction and the perceived annoyance of ar-
tifacts. Therefore an informal listener test was con-
ducted to compare the proposed algorithm to well
established noise reduction software solutions. 31
expert listeners were asked to rate the perceived
amount of noise after noise reduction as well as the
amount of musical noise on a 5-point scale with 5
being the highest and 1 the lowest achieved quality.
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The perceived quality of noise reduction (Fig. 4.2)
was rated to be comparable to the evaluated denois-
ing software, all of them requiring a fingerprint. Fur-
thermore the results indicate with statistical signif-
icance that the perceptible amount of musical noise
produced by the test systems is negligible.

5. CONCLUSION
We presented a new algorithm for real-time noise
reduction of audio signals using the Ephraim and
Malah noise suppression rule. Due to the novel us-
age of an adaptive noise spectrum estimation based
on an AR-model a preselected noise fingerprint is
no longer necessary. The adaptive estimation of the
noise spectrum enables the algorithm to deal with
non-stationarities of the noise process and makes the
algorithm capable of real-time processing. In ad-
dition quality improvements are easily possible by
integration of additional processing blocks such as
transient preservation.
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