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ABSTRACT

In this paper, a drum transcription algorithm using partially
fixed non-negative matrix factorization is presented. The pro-
posed method allows users to identify percussive events in
complex mixtures with a minimal training set. The algorithm
decomposes the music signal into two parts: percussive part
with pre-defined drum templates and harmonic part with un-
defined entries. The harmonic part is able to adapt to the
music content, allowing the algorithm to work in polyphonic
mixtures. Drum event times can be simply picked from the
percussive activation matrix with onset detection. The system
is efficient and robust even with a minimal training set. The
recognition rates for the ENST dataset vary from 56.7 to 78.9%
for three percussive instruments extracted from polyphonic
music.

Index Terms— NMF, MIR, Drum Transcription, Auto-
matic Music Transcription

1. INTRODUCTION

Automatic music transcription is an intensively researched area
in Music Information Retrieval (MIR). The reliable extraction
of a score (or a score-related representation) from the audio
signal is the core technology of a large number of applica-
tions in fields such as music education, systematic musicology,
and music visualization. Furthermore, a reliable transcription
would enable high-level representations of music signals with
the potential of improving virtually any MIR task.

A complete transcription system comprises many related
sub-tasks such as multi-pitch detection, onset detection, instru-
ment recognition, and rhythm extraction [1]. While the main
focus has been mostly on pitched instruments, a considerable
amount of publications deal with the transcription of percus-
sive sounds in mixtures of tonal and percussive instruments.
The drum track in popular music conveys information about
tempo, rhythm, style, and — at least partly — the structure
of a song. A drum transcription system enables applications
in active listening [2], music education, and interactive music
performance [3].

This study explores the application of the popular tran-
scription method of Non-negative Matrix Factorization (NMF)
for drum transcription from polyphonic music. The paper is
structured as follows: Section 2 provides an overview of the re-
search in this area. In Section 3 we present our approach; eval-
uation results are being presented and discussed in Section 4.
Section 5 provides a summary, conclusion, and directions of
future work.

2. RELATED WORK

Early attempts to transcribe percussive sounds mainly focused
on the classification of signals containing solely drum sounds.
For these systems, standard approaches with a feature extrac-
tor and a subsequent classification engine are able to produce
results with high accuracy [4]. For many real-world appli-
cations, however, the input file often comprises a mixture of
percussive and harmonic sound sources. For most use cases, a
drum transcription system is expected to work on this mixture
of sounds instead of exclusively on percussive sounds. Gillet
and Richard divide systems for the drum transcription from
mixtures into three categories [5]: (i) segment and classify,
(ii) separate and detect, and (iii) match and adapt.

Systems of the first category (segment and classify) usually
segment the audio signal into a series of events by applying au-
tomatic onset detection and extract various features from time
or spectral domain. Each event segment is then classified based
on the extracted features. This approach seems to perform well
when the features are well chosen [6, 7]. However, a sufficient
amount of training data and carefully adjusted pre-processing
is required in order to get good results. When working with
single-label classifiers, the number of drum classes increases
substantially due to the possibility of simultaneous events.

The second type of approaches (separate and detect) is
based on the assumption that the music signal is a superposi-
tion of different sound sources. By decomposing the signal
into source templates with corresponding activation functions,
the music content could be transcribed by identifying the tem-
plates and analysing the activities for each template. Different
methods such as Independent Subspace Analysis [8], Prior
Subspace Analysis [9], and Non-negative Matrix Factoriza-



tion (NMF, see below) [10, 11] fall into this category. The
advantage of these approaches is that they usually are easier
to interpret since most of the decompositions are carried out
on the spectrogram of the signal. Furthermore, the handling
of simultaneous and overlapping events is inherent to the ap-
proach. However, one potential problem in the context of
NMF with a pre-determined dictionary matrix is whether or
not the templates are representative enough. Another difficulty
is the determination of the rank required for the decomposition
process.

The third type of approaches (match and adapt) uses pre-
trained templates to detect drum events [12]. The templates
are searched for the closest match and adapted in an iterative
process.

3. METHOD

3.1. Algorithm Description

In this paper, we propose a method using partially fixed NMF
to transcribe drum events in polyphonic signals. The idea of
using NMF with prior knowledge of the target source within
the mixture has previously been applied to source separation
tasks [13], and multipitch analysis [14]. The method described
here is based similar ideas but with different emphasis: (i) we
focus on a real world scenario in which users only have limited
amount of training samples that are possibly different from
the target source, and (ii) we propose to use a small dictionary
matrix which is both efficient and easily interpretable.

The basic concept of NMF is to approximate a matrix V
with matrices W and H as V ≈WH with non-negativity con-
straints. Given a m× n matrix V , NMF will decompose the
matrix into the product of a m× r dictionary matrix W and an
r × n activation matrix H , with r being the rank of the NMF
decomposition. In most audio applications, V is the spectro-
gram to be decomposed, W contains the magnitude spectra of
the salient components, and H indicates the activation of these
components with respect to time [15]. The matrices W and
H are estimated through an iterative process that minimizes
a distance measure between the target spectrogram V and its
approximation [16].

When NMF is applied to the task of music transcription,
typically the following challenges have to be faced: First, the
number of sound sources and notes within a music recording
is usually unknown. It is therefore difficult to determine a
suitable rank r in order to obtain a clear differentiation of the
decomposed components in the dictionary matrix. Second, it
can be hard to identify the corresponding instrument of every
component in the dictionary matrixW . This problem becomes
more severe when the rank is selected too high or too low.
Third, when multiple similar entries exist in the dictionary
matrix, the corresponding activation matrix could be activated
at these entries simultaneously, which in turn increases the dif-
ficulty of intuitively interpreting the results. Different methods
have been proposed in previous studies to address these issues.

Fig. 1. Illustration of the factorization process. Subscript D:
drum components H: harmonic components.

Helen and Virtanen trained an SVM to separate drum compo-
nents from the harmonic components; the rank number was
derived empirically during the factorization process [17]. The
identified drum components and their corresponding activities
could later be used to reconstruct the drum signal, resulting in
a system for drum source separation. Their approach requires a
significant amount of training data for the classifier and, more
importantly, the results can be expected to be very sensitive to
choice of rank.

Yoo et al. proposed a co-factorization algorithm [18] to
simultaneously factorize a drum track and a polyphonic sig-
nal. They used the dictionary matrix from the drum track to
identify the drum components in the polyphonic signal. This
approach ensures that the drum components in both dictionary
matrices are estimated only from the drum track, resulting in
proper isolation of the harmonic components from the drum
components. Since their system aims at drum separation they
can work at very high ranks. For drum transcription, however,
the approach is not directly applicable because of the probable
lack of interpretability of the dictionary matrix.

Nevertheless, their work inspired our approach to drum
transcription. Figure 1 visualizes the basic concept from the
work of Yoo et al.: the matrices W and H are split into the
matrices WD and WH, and HD and HH, respectively. Instead
of using co-factorization, however, we propose to initialize
the matrix WD with drum templates and to not modify it
during the factorization process. Matrices WH, HH, and HD

are initialized with random numbers. The distance measure
used in this paper is KL-divergence, in which DKL(x | y) =
x · log (x/y) + (y − x). The cost function as shown in (1)
is minimized by applying gradient decent and multiplicative
update rules as described in [16], and the matrices WH, HH,
and HD will be updated according to (2)–(4).

J = DKL(V |WDHD +WHHH) (1)

HD ← HD
WT

D (V/(WDHD +WHHH))

WT
D

(2)

WH ← WH
(V/(WDHD +WHHH))H

T
H

HT
H

(3)

HH ← HH
WT

H (V/(WDHD +WHHH))

WT
H

(4)

To summarize, the method consists of the following steps:
1. Construct a m× rD dictionary matrix WD, with rD being



Fig. 2. Flowchart of the drum transcription system

the number of drum components to be detected.

2. Given a pre-defined rank rH, initialize a m × rH matrix
WH, a rD × n matrix HD and a rH × n matrix HH.

3. Normalize WD and WH.

4. Update HD, WH, and HH using (2)–(4).

5. Calculate the cost of the current iteration using (1).

6. Repeat step 3 to step 5 until convergence.
The time positions of the drum events can then be extracted by
applying a simple onset detection on the rows of matrix HD.

3.2. Implementation

Figure 2 shows the flow chart of the implemented system.
Since the NMF is based on a constructive assumption of multi-
ple sources, the representation of the signal must be superim-
posable. Therefore, a magnitude spectrogram is used to instead
of other audio specific features. The STFT of the signals will
be calculated using a window size and a hop size of 2048
and 512 with a sampling frequency of 44.1 kHz. A pre-trained
dictionary matrix will be constructed from the training set, con-
sisting of isolated drum sounds. Next, the partially fixed NMF
will be performed with rank r = rD + rH as described above.
Finally, the activation Matrix HD is evaluated to determine the
onset positions and their corresponding classes.

As mentioned above, the dictionary matrix WD is created
by extracting a template spectrum from isolated training drum
samples. The template magnitude spectrum is a median spec-
trum of all individual events of one drum class in the training
set. The length of each event is approximately 80 ms. The
templates are extracted for the three classes Hi-Hat (HH), Bass
Drum (BD) and Snare Drum (SD).

High values in the activation matrix HD indicate the pres-
ence of a drum event. More specifically, the activity difference
of each row of the activation matrix could be considered as
the onset novelty function of each individual drum. We use a
median filter to create an adaptive threshold for peak picking.
The implementation of the median filter is shown in (5). The
G is the time-varying threshold. Q is a function that extracts
the median from previous input signal within a fixed window
size. λ is an offset coefficient to control the sensitivity of the
threshold. For every track, we set the window size to be 0.1 s
and the λ to be 0.12 of the maximum value, respectively.

G(t) = λ+Q(t) (5)

Dr1 Dr2 Dr3 Total
HH 1942 2145 1813 5900
BD 2140 1488 1378 5006
SD 2165 2079 1994 6238

Total 6247 5712 5185 17144

Table 1. Onset counts in selected data set

4. EVALUATION

4.1. Dataset Description

The experiments have been conducted on the minus one subset
from the ENST public drum data set [19]. This data set con-
sists of recordings from three different drummers performing
on their own drum kits. The set for each drummer contains
individual hits, short phrases of drum beats, drum solos, and
short excerpts played with the accompaniments. The minus
one subset has 64 tracks of polyphonic music, and the sam-
pling rate of every track is 44.1 kHz. Each track in this subset
has a length of approximately 70 s with varying style. More
specifically, the subset contains various drum playing tech-
niques such as ghost notes, flam, and drag; these techniques
are considered difficult to identify with existing drum transcrip-
tion systems. Since we are only interested in the three classes
HH, BD, and SD, tracks missing one of these instruments
or featuring specific playing techniques have been discarded,
leaving a subset of 53 out of 64 tracks.

The accompaniments are mixed with the drum tracks in the
data set without any modification (e.g., no level adjustment).
The distribution of onset counts per class per drummer is
shown in Table 1. The drum templates have been generated
from a different part of the dataset which only contains single
hits performed by the same group of drummers. Each track
contains 5 to 6 single hits on different drums for each drummer.
The onset position of these single hits was determined using
the annotated ground truth.

4.2. Evaluation Procedure

We evaluate two different combinations of training and test
data: First, we use training samples from all three drummers to
train the drum dictionary matrix, and test the system on all 53
tracks; second, we investigate the cross-performer accuracy. In
the latter scenario, the training samples are selected only from
one drummer, and tested on the other drummers’ recordings.
This scenario should be similar to a real-world use case for
which the trained drum sounds are not necessarily similar to
the drum sounds in the target signals.

The evaluation metrics follow the standard calculation of
the precision (P), recall (R), and F-measure (F). An onset is
considered to be a match with the ground truth if the time
deviation between the annotated and detected onset is less or
equal to 50 ms.



Fig. 3. Average F-measure versus harmonic rank rH

4.3. Evaluation Results

In an initial test to determine the rank rH of the algorithm,
rH = 5, 10, 20, 40, 80, 160 have been tested. The resulting
individual F-measures are shown in Figure 3. A general trend
of decreasing performance with increasing rH can be observed,
especially for lower frequency sounds such as SD and BD.
Based on this observation, a rank number rH = 10 is chosen
in current setup.

Instrument HH BD SD
P 0.681 0.755 0.634
R 0.727 0.827 0.513
F 0.703 0.789 0.567

Table 2. Transcription results using all training templates

Table 2 shows the results when the system was trained
with the recordings of all three drummers. Gillet and Richard
reported an F-measure of 77.7%, 65.0% and 64.8% for HH,
BD, and SD for the same dataset, using a sophisticated ap-
proach requiring a significant amount of training data [5]. We
observe that our systems performs better performance on BD,
but slightly worse for SD and HH.

In order to investigate the dependency of our approach
with respect to the similarity of training and test drum sounds,
we conduct a cross-performer evaluation as mentioned in
Section 4.2. The results, listed in Table 3, show a simple trend:
the test set containing drummer 2 nearly always gives the best
results, regardless of the training set. Also, when training with
different drummer’s recordings, the F-measure from HH and
SD are mostly within the same range as the results reported
in Table 2 except for BD. This could be due to the fact that
Bass Drum of drummer 2 is easy to detect. These results in-
dicate that the presented algorithm is relatively robust against
differences between the drum template and the sound of the
drum to be detected. This would allow to construct a template
from different sound sources independent of the recording to
be analyzed allowing more general applications. However, the
performance of this setup still needs to be confirmed with a
cross-data set validation.

Training Dr1 Dr2 Dr3 Avg.Testing Dr2+Dr3 Dr1+Dr3 Dr1+Dr2
HH P 0.661 0.662 0.660 0.661

R 0.747 0.719 0.726 0.731
F 0.701 0.689 0.691 0.694

BD P 0.811 0.641 0.859 0.770
R 0.905 0.742 0.915 0.854
F 0.855 0.687 0.886 0.810

SD P 0.724 0.543 0.727 0.665
R 0.538 0.429 0.539 0.502
F 0.617 0.479 0.619 0.572

Table 3. Transcription results of cross-performer validation.

5. CONCLUSION

We have presented a drum transcription system for polyphonic
music using partially fixed NMF. This method uses a partially
pre-trained dictionary matrix to decompose the target signal
and to estimate the activation matrix. The evaluation results
show that this method is able to achieve 56.7 to 78.9% F-
measure for detecting 3 classes from complex mixtures of
music.

The presented method has the following advantages: First,
the fixed dictionary matrix in the model makes it easier to
interpret the corresponding activation matrix for transcription
tasks. Second, simultaneous sounds can be detected separately
without the need of training extra classes. Third, adjustment
of the parameter rH allows the algorithm to adapt to different
different types of polyphonic music. Fourth, cross-performer
evaluation results indicate a robustness against template mis-
matches, possibly allowing the application in situations with
minimum prior knowledge. Last but not least, the approach
only requires a few drum samples to train the dictionary ma-
trix, and the evaluation results indicate that the performance is
comparable with state-of-the art methods at lower algorithmic
complexity.

Possible directions for future work are: a comparison be-
tween this approach and Probabilistic Latent Component Anal-
ysis (PLCA) [20]. We will also investigate means to itera-
tively adapt the template during the decomposition as a way
of improving the current method. Furthermore, the automatic
estimation of rH for any given signal using a probabilistic
approach similar to [21] might be a solution to rank selection.
Finally, different penalty terms for the cost function, such as
sparsity, temporal continuity [22], or rank rH might be taken
into account for better adjustment of the current method. To
reach the goal of a complete drum transcription system for
polyphonic music, however, more factors such as playing tech-
niques and more drum classes still need to be addressed in the
future.
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