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ABSTRACT

In this paper we present beat histogram features for multiple level
rhythm description and evaluate them in a musical genre classifica-
tion task. Audio features pertaining to various musical content cat-
egories and their related novelty functions are extracted as a basis
for the creation of beat histograms. The proposed features capture
not only amplitude, but also tonal and general spectral changes
in the signal, aiming to represent as much rhythmic information
as possible. The most and least informative features are identi-
fied through feature selection methods and are then tested using
Support Vector Machines on five genre datasets concerning classi-
fication accuracy against a baseline feature set. Results show that
the presented features provide comparable classification accuracy
with respect to other genre classification approaches using period-
icity histograms and display a performance close to that of much
more elaborate up-to-date approaches for rhythm description. The
use of bar boundary annotations for the texture frames has pro-
vided an improvement for the dance-oriented Ballroom dataset.
The comparably small number of descriptors and the possibility of
evaluating the influence of specific signal components to the gen-
eral rhythmic content encourage the further use of the method in
rhythm description tasks.

1. INTRODUCTION

The extraction of features describing musical rhythm is an im-
portant and a challenging topic in Music Information Retrieval
(MIR) with applications in many areas [1, 2, 3, 4]. Rhythm fea-
tures can be of importance, for example, in musical genre clas-
sification, where they have been shown to improve classification
accuracy and, in specific cases (such as for special, dance-music
oriented datasets) allow very successful rhythm-based classifica-
tion or similarity computation [2, 5, 6, 7, 4]. Since the concept
of ’genre’ can be related to various musical parameters [8, 9, 5],
it is generally attempted to include features from all possibly rel-
evant musical categories (timbre, pitch, loudness, and rhythm) in
order to achieve good classification results. In this paper, we chose
to focus on rhythm features for musical genre classification since
computational rhythm description remains a challenging subject,
even when considerable advances have been made lately in this
field [7, 10, 11, 4]. A common approach to the description of the
rhythmic content of a musical track focuses on the extraction of
features based on changes in the signal’s amplitude envelope, pos-
sibly applying frequency-band filtering or attempting to track en-
ergy changes from the signal’s short time spectrum. The basic as-
sumption behind this approach is that rhythm is strongly related to

long-term amplitude periodicities and their statistical properties [2,
5, 6]. This assumption is, in our view, well-founded, since many
music theoretical works on rhythm have stressed the multidimen-
sional nature of rhythm, establishing the need to consider different
musical properties and their temporal evolution when attempting
to represent the rhythmic content of music [12, 13, 14, 15].

Several approaches for the automatic extraction of features de-
scribing rhythmic content for genre classification through a period-
icity distribution representation have been proposed [16, 17, 18].
They are based on earlier studies on beat analysis [19], which
aimed at creating a very low frequency periodicity representation
(later commonly dubbed the beat histogram [16] or periodicity his-
togram [18]), used to extract musical parameters such as tempo as
well as low-level features (e.g., statistical properties of the his-
togram such as mean or standard deviation). Traditionally, a mea-
sure of the signal amplitude envelope or its change over time is
utilized as the novelty function for the extraction of a beat his-
togram [18, 16, 17]. Genre classification systems based on such
representations have generally shown promising results, although
the rhythm features did not perform as well as other subsets of the
feature set such as timbre features [5, 16, 17]. There still exist
only relatively few studies [20, 21, 18, 22, 3] where rhythm fea-
tures alone were so efficient as to achieve high accuracy in a genre
classification or similarity task. The dataset used in most of those
cases (Ballroom [23]) includes only tracks from dance genres with
presumably clearly distinguishable rhythmic properties, leading to
very high performance but providing little information as to the
suitability of the features for music with less distinctive rhythm.

Additionally, there exist many approaches for rhythm descrip-
tion which do not only base themselves on direct feature extraction
from a periodicity representation, but rely on direct similarity mea-
surements, computing distances between rhythm representations
also being based on periodicities present in the signal [24, 25, 26,
7]. Finally, latest works have attempted to model rhythm using
probabilistic models [10, 3, 27] or deep neural networks [11, 28].
Such methods have shown excellent results in rhythmic classifi-
cation and similarity computation tasks (with accuracies ranging
up to 95% [3, 27, 11]), attesting to the plausibility of addressing
rhythm-based genre classification tasks with rhythmic similarity
methods or elaborate rhythm modeling [4]. However, we identify
two main drawbacks with this category of approaches: first, the
interpretability of the features describing rhythm is limited, since
the method of their generation is either too complex or based on
purely technical and not music-theoretical considerations. This is
not a problem, of course, if the goal is to develop a method provid-
ing high accuracy; it does, however, limit the possible conclusions
which can be drawn from the classification task in itself and the
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features involved in it. Secondly, the complexity of the methods
makes them prone to errors and random influences. Furthermore,
the very high results achieved by some studies, although proving
the suitability of such classifier systems for e.g. commercial use,
should in our view be seen in a critical light for two reasons: on
the one hand, it is questionable whether systems based only on
rhythmic features could theoretically achieve such performance,
since listening experiments show that even human subjects cannot
distinguish genres perfectly [29]; on the other hand, it has been
demonstrated very often in the intrinsically fuzzily defined genre
classification task that complex systems relying on elaborate trans-
formations and trained with small amounts of data might provide
very high results, but in effect do not generalize to real-world data
(a case of overfitting) or do not describe the quantities they are
supposed to, their performance being an artifact of an erroneous
ground truth or highly dataset-specific features [30, 31, 32]. We
chose to focus on the periodicity representation methods and the
features which can be extracted on their basis, conducting a de-
tailed examination of the features which can be used in their con-
text and their behavior for many different datasets. This approach
allows to investigate the merits of those methods in depth and to
identify which signal-based features bear the most importance for
rhythmic description.

A common element of previous studies using periodicity rep-
resentations allowing rhythmic content feature extraction for genre
classification is that the features are derived from a beat histogram
created on the basis of the signal amplitude and energy changes,
as for example in [16, 17, 18]. This approach might seem intu-
itive at first, since it is based on the assumption that rhythmic
properties are conveyed through amplitude or energy changes in
the musical signal, which is a common consequence of rhythm
perception modalities [33, 34]. However, relevant literature in
music theory [12, 15, 14] and cognition [35, 36] indicates that
rhythm arises as the combination or interplay of periodicities asso-
ciated with different sound properties such as amplitude (e.g., ac-
cents), spectral (e.g., instrumentation changes) and tonal changes
(e.g., chord changes). In the field of onset detection, novelty func-
tions have been proposed which take into account spectral content
changes [37, 38, 39]. The goal of this work is to capitalize on
this observation by extracting novelty functions from different sig-
nal properties (which will allow to take not only amplitude-based
but also spectral and tonal changes and their related periodicities
into account), using the beat histogram method to create a basis
for features describing the rhythmic content of the signal. We
investigate the impact of using various musical qualities as nov-
elty functions for beat histogram calculation on classification ac-
curacy, identify the most and least descriptive features and feature
groups, and compare the results to those of a traditional timbre-
related feature set. Furthermore, the effect of bar boundary an-
notations from manually annotated data is investigated, since beat
histograms based on musically more meaningful data are expected
to produce more qualitative features. Finally, we examine the mis-
classifications in the confusion matrices to draw conclusions on
the suitability of the features for rhythm-based classification and
possible shortcomings.

The paper is structured as follows. In Section 2, the feature
extraction procedure is described. In the third Section, the eval-
uation of the proposed features is given, along with information
about feature selection and the datasets. In the fourth Section, re-
sults are presented and discussed in Section 5. Finally, we give
conclusions and suggestions for future work (Section 6).

2. METHOD

Novelty functions are generally defined as temporal curves des-
ignating prominent changes of a signal [40, 41, 42, 43], resulting
from a reduced or filtered version of the original signal from which
the first difference is computed, in order to accentuate substantial
changes in the monitored quantity. In this paper, we expand this
definition somewhat and consider every temporal trajectory of a
signal feature to effectively be a novelty function in order to use it
as a basis for the beat histogram calculation. This assumption is
justified from a practical point of view, since prominent changes
in the magnitude of a signal feature (such as, e.g., spectral flux)
are still represented (but not as accentuated), their inherent peri-
odicities detectable by methods such as a Discrete Fourier Trans-
form (DFT), an Auto-Correlation Function (ACF) or a resonant
filter bank. Furthermore, the avoidance of taking the first differ-
ence function has the added advantage of reducing noise in the
feature temporal trajectory. For rhythm analysis, signal character-
istics beyond amplitude are included here since their periodicities
also contribute to the overall rhythm. Examples include changes
in instrumentation, which cause a universal, broadband change in
the spectral content of a signal, or chord changes, which can be
tracked by changes in the instantaneous pitch content.

Fig. 1 shows the novelty function (top) and the resulting beat
histogram (bottom) for two features representing spectral change
(Spectral Flux) and spectral shape (Spectral Flatness), respectively.
The audio track is an excerpt from the disco class of the GTZAN
dataset [16] and the features are extracted over the whole length of
a single texture frame (3 s). In the excerpt, the drum section plays a
straight 4/4 measure with a beat each 0.48 s, clearly visible in the
spectral flux temporal curve (tracking general spectral change) and
as the prevalent periodicity (126 BPM) in the corresponding beat
histogram. The changes tracked by the spectral flatness measure,
however, more strongly reflect tonalness changes, taking place ev-
ery 0.96 s, with a main periodicity of 63 BPM. Both the general
form (distribution) of the histogram and the strength and exact
BPM value of the most prevalent periodicities can be seen to differ
significantly in the two examples. Based on this example, it is ob-
vious that the changes tracked by different novelty functions can
lead to different beat histograms for the same audio excerpt, with
each histogram potentially providing a rhythmically meaningful
description.

The novelty functions used in this paper cover envelope, spec-
tral shape, and tonal content changes. The selected features are the
following (for details on their computation, see [44]):

• Spectral Shape features include Spectral Flux (SF), Spec-
tral Centroid (SCD), Mel Frequency Cepstral Coefficients
(MFCC 1-13) and Spectral Flatness (SFL).

• Tonal novelty features comprise Spectral Tonal Power Ra-
tio (STPR) and the Pitch Chroma Coefficients (SPC 1-12).

• Envelope novelty is tracked through the Root Mean Square
(RMS) measure of the signal amplitude.

The beat histogram computation is similar to the one proposed
by Tzanetakis [16] without implementation of the wavelet filter-
ing. All features are calculated through a Short-Time-Fourier-
Transform (STFT), except for the RMS which is extracted with the
same temporal resolution parameters from the time domain signal.
The complete procedure for the generation of a feature vector rep-
resenting each track includes the following steps:
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Figure 1: Temporal Trajectory of Spectral Flux and Spectral Flatness (upper row) and corresponding Beat Histograms from 30−240 BPM
(lower row).

1. Preprocessing: the audio signal is down-mixed to mono,
resampled to 22.5 kHz, lowpass-filtered to remove DC com-
ponents and normalized.

2. STFT: the transform is computed with a frame-length of
approximately 46.4 ms, windowed by a Hann window and
with 75% overlap between consecutive frames. The result-
ing frequency resolution is ∆f = 10.77 Hz.

3. Novelty function: the features listed earlier are extracted
from the STFT frames, and the novelty function is com-
puted through the calculation of the temporal trajectory and
half-wave rectification, as is commonly practiced in novelty
function extraction [43].

4. Beat histogram: the beat histogram is extracted through
the calculation of an Autocorrelation Function (ACF) for
each texture window of length 3 s. The overlap of the tex-
ture windows is 75%.

5. Subfeature computation: for each beat histogram, the sub-
features listed in Table 1 are extracted. The concatenation
of all subfeature groups for each novelty function produces
the final feature vector for an audio excerpt.

Similar subfeatures can be found e.g. in [16] (Peak), and
[17, 18] (Distribution). In total, 30 novelty functions are used for
the production of as many beat histograms, from each of which 19
subfeatures are extracted, resulting in a total count of 570 features.
This effectively means that from the temporal trajectory of every
MFCC or chroma coefficient, as well as the other features men-
tioned in the previous paragraph, a beat histogram is extracted,
ensuring that all relevant periodicities and their properties — in
different frequency bands and describing various audio aspects —
are accounted for.

Table 1: Subfeatures extracted from Beat Histograms.

Distribution Peak
Mean (ME) Salience of Strongest Peak (A1)

Standard Deviation (SD) Salience of 2nd Stronger Peak (A0)
Mean of Derivative (MD) Period of Strongest Peak (P1)
SD of Derivative (SDD) Period of 2nd Stronger Peak (P2)

Skewness (SK) Period of Peak Centroid (P3)
Kurtosis (KU) Ratio of A0 to A1 (RA)
Entropy (EN) Sum (SU)

Geometrical Mean (GM) Sum of Power (SP)
Centroid (CD)
Flatness (FL)

High Frequency Content (HFC)

3. EXPERIMENTAL SETUP AND EVALUATION

In order to be able to compare the results for the rhythm content
features we extracted a baseline feature set by calculating the fea-
ture value over all texture windows of an excerpt (keeping the aver-
age value inside a window) without extracting periodicities. Those
features are considered as a baseline since they represent a stan-
dard set of features used in genre classification. They include all
features listed in Sect. 2 except the Pitch Chroma Coefficients and
additionally include the features Spectral Spread, Peak Amplitude
Value, and Zero Crossing Rate. The subfeatures on each of these
features’ temporal trajectory throughout each track are given in
the Distribution column of Table 1. In total, the baseline feature
set comprises 21 features times 11 subfeatures = 231 features.
We chose not to include other, more state-of-the-art non-rhythmic
features in the baseline mainly because we aimed at investigating
rhythmic features rather than non-rhythmic features. Second, since
the main goal of the paper was to evaluate the beat histogram fea-
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tures derived from all relevant novelty functions of the signal, it
seemed plausible to include as a baseline the same novelty func-
tions. This, however, was performed without applying the beat
histogram transformation, so as to assess the added value of this
certain processing step and the resulting features.

3.1. Classification

For the classification part, we apply the Support Vector Machines
(SVM) [45] algorithm under MATLAB with a Radial Basis Func-
tion (RBF) kernel. The two hyperparameters for this kernel C and
γ were determined with a grid search procedure. For all the exper-
iments presented here, a 10-fold cross-validation took place, and
results are averaged over the folds. The goal of the given classi-
fication setup is to compare the performance of the rhythm con-
tent feature set to a standard set of features, while also testing the
combined set in order to assess the improvement when using the
rhythm feature set in addition to the baseline set. All features are
subjected to standardization (z-score) prior to classification (train
and test set separately). The performance measure used to evaluate
the classification is accuracy, defined as the proportion of correctly
classified samples to all samples classified.

3.2. Datasets

In order to ensure comparability of the results with other publica-
tions and to evaluate the rhythm features for different genre hier-
archies and tracks, five datasets were evaluated:

• GTZAN [16]

• Ballroom [18, 23]

• ISMIR04 [46]

• Unique [47]

• Homburg [48]

Although none of the datasets raises claims to being either
complete or error-free (since the definition of genre itself is a de-
batable subject), their previous extensive use makes them suitable
as benchmarks for the musical genre classification task. In order to
avoid having results which could be artifacts of one specific dataset
(e.g., for the GTZAN which has been criticized for its content [31],
or the Ballroom which has been seen to be easily classifiable by the
tempo feature [18]), we chose to include five very diverse datasets
here. An interesting task which came under consideration would
be training with one dataset and testing with another. However, the
different class/genre structure across them did not allow for such a
use in this context.

3.3. Feature Selection

The large number of resulting features mentioned in Sect. 2 makes
direct feature evaluation a tedious task. In order to identify the best
and worst performing descriptors we conducted a two stage fea-
ture selection: First, we apply a filter method (Mutual Information
with Target Data [49], using the maximum relevance CMIM metric
[50] from the MI-Toolbox [51]). Second, we run a sequential for-
ward feature selection using the SVM as a wrapper method [52].
We retain the N best features (the feature number N is dataset-
dependent, but ranges between 10 and 20) which gave comparable
to or better accuracy than the full feature sets. This procedure is
applied to the baseline and rhythm feature sets separately, and the

best features from both are then pooled to produce the combined
feature set. Finally, we apply feature selection by separating fea-
ture subsets in the rhythm set in order to determine the effective-
ness of different novelty functions and subfeature groups.

3.4. Bar Annotation

The parameters for the rhythm feature extraction algorithm were
given in Sect. 2. It is a common problem of many such algorithms
that the overlapping texture windows used in the block-wise pro-
cessing of the audio file are of pre-defined length that does not nec-
essarily represent "meaningful" parts of the music, such as, e.g., a
bar. Placing the frames exactly at the boundaries of a bar or a
musical phrase could increase the precision of the beat histogram
representation, since the periodicities extracted from the segment
would be musically meaningful, without onsets added or being left
out because of random framing. In order to adapt the texture win-
dow boundaries to the bar boundaries, annotations of the audio
files are necessary. In the case of the Ballroom dataset, such a
manual annotation is available [53] and will be used here.

4. RESULTS

Results of the classification after feature selection for all datasets
are presented in Fig. 2 and Table 2. The priors (percentage of a
class/genre samples in a dataset) as average (Avg) and of the great-
est class (Max P ) are also provided. Sample results of the feature
selection process concerning feature ranking (the three best and
three worst features per dataset) are given in Table 3. Apart from
that, in Fig. 3, accuracy results for all novelty function and sub-
feature groups for each dataset can be seen. Finally, confusion
matrices are provided for the GTZAN and Ballroom datasets (Ta-
bles 4 and 5) for the rhythmic feature set in order to examine the
misclassifications for those very well-known datasets.

Some tendencies can be clearly identified: The baseline fea-
ture set performs always better than the rhythm feature set alone
except for the Ballroom dataset. The difference is mostly small
but also significant at the 0.05 level in all cases except for the IS-
MIR04 dataset (based on a comparison test of the Cohen’s Kappa
extracted from the confusion matrices [54]); it ranges from 1.9%
for the ISMIR04 dataset to 12.3% for the GTZAN dataset. Only
for the Ballroom dataset the accuracy using the rhythm feature set
is 6.8% above that observed when using the baseline set. The
combined feature set outperforms the individual sets in all cases,
the achieved accuracy being very close to that of the baseline fea-
ture set. This difference in accuracies is significant at the 0.05
level only in two cases (Ballroom and Unique). With regard to
the datasets, results show accuracies in the area of 44.6 (rhythm
feature set, Homburg) to 72.8% (combined feature set, GTZAN).
The best performance of the rhythm features can be observed for
the Ballroom dataset (67.7%), whereas the poorest performance
can be found for the Homburg dataset. It should be noted that for
the unbalanced datasets (i.e., all except GTZAN) it was observed
from inspecting the confusion matrices that the achieved accuracy
is mostly influenced by the most prominent class being classified
correctly, whereas for the other classes, the performance is inferior
but still in most cases above the prior of the respective class. An
important result is the performance of the Ballroom dataset when
using the annotated bars as texture window length (Table 2): It
shows a clear improvement for the rhythm feature set alone and
reaches 88.4% for the combined set.
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Figure 2: Classification results after feature selection.

Table 2: Classification results (accuracy in %) for various settings
and best classification results. For the Ballroom dataset, a sec-
ond accuracy value is reported for the case of using the manual
annotation for frame boundaries.

Setting GTZAN Ballroom ISMIR04 Unique Homburg
Baseline 72.1 60.9 69.6 68.5 50.7
Rhythmic 59.3 67.3/76.7 67.5 66.3 44.6
Combined 72.8 71.9/88.4 70.1 72 51.1
P.-MaxP 10 15.9 43.9 24.6 26.7

P.-Avg 10 12.5 16.7 7.1 11.1

Concerning feature selection, it can be seen in Table 3 that
the best features resulting from the information-theoretical feature
selection procedure comprise proportionally more features based
on spectral (SF, SFL) or amplitude (RMS) novelty, whereas with
respect to the subfeatures the image is not so clear — only the
SD feature appears more consistently (4 times) in the first ranks.
The worst features can be seen to be based on tonal (STPR, SPC)
novelty functions, with subfeatures giving a clearer image, with
Peak features such as the A1 being frequent in the ranking.

Those tendencies can also be partially observed in Fig. 3, where
the feature groups were tested individually: the only novelty func-
tions showing to provide slightly better results on its own for all
datasets are the SFL, MFCC2, STPR and RMS, whereas other
MFCC and SPC features show relatively lower performance on
their own. However, the performance of all novelty functions ap-
pears to be relatively similar, except for the SFL, STPR and RMS
novelty functions which seem to provide higher performance for
all datasets. In the case of the subfeature groups, no specific fea-
ture seems to be standing out.

Table 3: Best and worst features after feature selection. Abbrevia-
tion left of point denotes subfeature, otherwise novelty function.

Rank GTZAN Ballroom ISMIR04 Unique Homburg
1 MD.RMS P1.SF MD.MFC2 SD.MFC1 SD.RMS
2 FL.RMS A0.SFL CD.MFC1 GM.SFL SD.SPC3
3 GM.SFL SD.SPC3 A0.SF MD.MFC2 FL.SFL

568 A0.STPR A0.STPR SP.MFC3 A0.STPR A1.MFC2
569 SP.MFC1 A1.MFC1 A1.RMS A1.MFC3 A0.MFC2
570 A1.RMS EN.MFC1 A0.STPR A0.MFC3 A1.MFC1

Table 4: Confusion matrix for Ballroom dataset, average accu-
racy: 67.3%. Accuracy and Prior are given in %.

Ch. Ji. Qu. Ru. Sa. Ta. Vw. Wa.
Ch. 87 4 3 4 8 3 2 0
Ji. 9 40 1 1 6 2 1 0

Qu. 2 5 50 5 10 6 3 1
Ru. 10 0 3 62 0 5 2 16
Sa. 9 6 7 3 55 4 2 0
Ta. 3 0 9 2 2 58 7 5
Vw. 0 0 11 9 0 5 25 15
Wa. 0 0 2 12 0 1 2 93
Acc. 78 67 61 63 64 67 38 85
Pr. 15.9 8.6 11.7 14.0 12.3 12.3 9.3 15 .8

Table 5: Confusion matrix for GTZAN dataset, average accuracy:
59.3%. Accuracy and Prior are given in %.

Bl. Cl. Co. Di. Hi. Ja. Me. Po. Re. Ro.
Bl. 59 2 4 4 5 5 8 1 7 6
Cl. 2 79 1 1 0 11 2 0 1 5
Co. 11 3 56 4 2 7 3 1 1 13
Di. 3 0 4 56 6 3 7 8 6 10
Hi. 3 0 0 8 64 2 2 5 13 3
Ja. 7 13 4 1 0 64 4 1 3 3
Me. 2 2 1 8 1 1 72 2 0 12
Po. 7 2 3 9 5 4 1 42 10 16
Re. 6 1 3 6 14 4 0 4 59 3
Ro. 7 4 8 4 4 4 15 9 4 42
Acc. 59 79 56 56 64 64 72 42 59 42
Pr. 10 10 10 10 10 10 10 10 10 10

5. DISCUSSION

The results given in Table 2 provide strong support for the view
that the presented rhythm features can perform in the same range
as non-rhythmic baseline features. The overall better performance
of the combined feature set is a consequence of using informa-
tion related to both timbre and rhythm features, with significant
improvement for two out of five datasets.

Concerning the datasets, the poor classification performance
observed for the Homburg dataset could be an indication that the
latter has a special genre or track selection, which cannot be pre-
dicted efficiently using our features. The very similar results ob-
served for all feature sets for the ISMIR04 dataset is most proba-
bly due to its largely unbalanced character. The Ballroom dataset
stands out as a good example where the rhythm features alone
could offer a satisfactory performance. The results reported here
are comparable to or better than those reported in studies using
similar methods [16, 17, 18], but lie below those of newer studies
employing more sophisticated features which depart from the beat
histogram [55, 7, 10, 3, 56, 11, 57]. However, the simplicity of the
beat histogram calculation and feature extraction and the possibil-
ity to assess features and feature groups individually are, in our
view, advantages which have to be taken into account.

The use of bar boundaries as texture window boundaries for
the Ballroom dataset gave encouraging results: A maximum ac-
curacy of 76.7% was achieved, which is a notable improvement
to the 67.7% with fixed-length segmentation. The result is close
to the one reported by Gouyon et al. [18] using features extracted
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Figure 3: Classification results for feature groups. Upper graphic shows Novelty Function, lower Subfeature groups. Datasets are denoted
by the following line styles: "-" (GTZAN), ".-" (Ballroom), "*-" (ISMIR04), "–" (Unique), "+-" (Homburg).

from the beat histogram. This suggests that the application of prior
knowledge regarding the “real” boundaries of the musical surface
can help to considerably improve the accuracy of rhythm-based
genre classification.

The misclassifications (reported in Tables 4 and 5) show that
genre confusions are those that could be expected when using fea-
tures capturing the rhythmic character of the pieces, thus making
it difficult to distinguish between genres containing similar pat-
terns: for the Ballroom dataset, the most prominent misclassifi-
cations take place between Rumba/Waltz, Quickstep/Samba and
Waltz/Viennese Waltz. For the GTZAN dataset, Classical is con-
fused with Jazz, Country with Rock, Hiphop with Reggae and
Pop with Rock and Metal. Those results indicate that the multiple
novelty-based beat histogram features indeed capture the specific
rhythmic properties of the genres and the regularities of their peri-
odicities, pointing towards the suitability of those features for the
extraction of general rhythmic properties.

With regards to the feature selection, it was shown that mainly
novelty functions which are based on amplitude or spectral shape
changes in the signal give the best results, a result which could
be confirmed both from the standard feature selection procedure,
as well as from the feature subset-based selection. Those results
can be due to important turning points of a track in most popular
western music being mostly mediated through loudness, energy
or spectral form (for example, in the case of many instruments
playing together in a bar change or a new instrument entering the

scene) which leads to those features possessing more salient nov-
elty functions out of which more qualitative beat histogram fea-
tures can be extracted. Another reason could be the role of those
novelty functions in stressing the basic metric positions in most
of western popular music. Concerning the subfeatures and the re-
sults of the information-theoretical feature selection (Table 3), the
higher performance of simple statistics such as the SD of the beat
histogram attest to them having more discriminative power, pos-
sibly because they express very basic statistical tendencies of the
periodicity distribution. Furthermore, higher-level features (such
as the P1, which is a good estimate of the excerpts’ tempo, already
shown to be important in rhythm-based genre classification [18]),
also possess discriminative power since their value is an impor-
tant indicator of a genre character (e.g. dance vs. classical mu-
sic). However, since no such tendencies are observed in the feature
group selection (Fig. 3), it can be deducted that no specific subfea-
ture on the beat histogram bears special discriminative power, but
it is rather the combination with a salient novelty function which
allows for better results.

6. CONCLUSIONS

The work presented in this paper focuses on the creation of novel
features for rhythm-based musical genre classification. The dif-
ference in comparison to previous studies in the field [16, 17, 18],
using the signal amplitude envelope only, is the use of the tempo-
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ral trajectory of other signal quantities such as SF as the novelty
function for the calculation of the beat histogram. We showed that
performance using these beat histogram features is higher or in a
similar range than related work using periodicity histograms. It
has also been shown that specific novelty functions relating to am-
plitude or spectral shape are among the most informative when
analyzed with a periodicity representation method. Finally, we
showed the positive impact of manual bar-boundary annotation for
the extraction of rhythm features on classification performance.

There are many more features which can be considered as nov-
elty functions [38, 43], as well as possible subfeatures on the beat
histogram (such as MFCCs, presented in [18]) and other methods
for the periodicity representation calculation [19, 17, 18]. Future
goals include an even more extensive and detailed feature selec-
tion, identifying the features or feature groups which are informa-
tive with respect to specific genres (in order to associate specific
novelty functions with relevance to specific genres) and a test of
the feature robustness against signal degradations. Those subfea-
tures and novelty functions could be then suitable for future use
in more specific rhythm description tasks. Furthermore, the inves-
tigation of optimal parameter settings for feature extraction and
classification, the utilization of other classification methods and
performance evaluation measures, as well as the usage of other
methods for feature aggregation are other possible research direc-
tions. The high accuracy achieved especially for the Ballroom
dataset indicates the suitability of the descriptors for further ap-
plication and points to the importance of bar-boundary annotation
(which can also be performed automatically) for rhythm features.

While the features for beat histogram calculation have been
evaluated only in the context of genre classification, we believe
that they will prove useful in other tasks as well. Future research
will concentrate on adjusting and using rhythm content features
for MIR tasks such as audio similarity and mood recognition. Pre-
liminary research has also been undertaken concerning the use of
novelty functions of specific instruments (e.g. Drums) extracted
through Non-Negative Matrix Factorization (NMF) [58], or the ap-
plication of the features to other signals, such as speech [59]. Their
application in a task of automatic spoken language identification
based on the rhythmic elements of speech has shown promising
results and points to further research directions.
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