
Audio Engineering Society

Convention Paper
Presented at the 141st Convention

2016 September 29–October 2 Los Angeles, USA

This paper was peer-reviewed as a complete manuscript for presentation at this Convention. This paper is available in

the AES E-Library, http://www.aes.org/e-lib. All rights reserved. Reproduction of this paper, or any portion thereof, is

not permitted without direct permission from the Journal of the Audio Engineering Society.

An Efficient Algorithm for Clipping
Detection and Declipping Audio

Christopher Laguna1, Alexander Lerch1

1 Center For Music Technology, Georgia Institute of Technology, Atlanta, Georgia, 30332, United
States of America

claguna3@gatech.edu, alexander.lerch@gatech.edu

ABSTRACT
We present an algorithm for end to end declipping, which includes clipping detection and the replacement

of clipped samples. To detect regions of clipping, we analyze the signal’s amplitude histogram and the

shape of the signal in the time-domain. The sample replacement algorithm uses a two-pass approach: short

regions of clipping are replaced in the time-domain and long regions of clipping are replaced in the

frequency-domain. The algorithm is robust against different types of clipping and is efficient compared to

existing approaches. The algorithm has been implemented in an open source JavaScript client-side web

application. Clipping detection is shown to give an f-measure of 0.92 and is robust to the clipping level.

1. INTRODUCTION

Audio quality enhancement is a topic of growing

relevance. Traditionally, audio quality enhancement

addresses restoration of historical recordings corrupted

by artifacts of old recording technology (e.g., tape hiss

in Digital Audio Tape) [1]. Recently, however, the need

to enhance the quality of mobile phone recordings has

emerged. Mobile phone recordings often contain poor

quality audio; this is prevalent in videos of live music

concerts taken by audience members. One frequently

occurring artifact in these mobile phone recordings is

clipping.

Clipping occurs when an audio signal’s level rises

above a microphone’s or AD converter’s maximum

input level. As more audio and video recordings are

being taken on mobile devices (sometimes in high

sound level conditions such as live concerts), clipping

has become an issue that users encounter

frequently. Although choosing correct microphone

placement and reasonable input levels can often prevent

clipping, there is a need to improve the quality of

existing recordings, especially when the damaged

recordings are irreplaceable.

Declipping is the process of removing the perceptual

effect of clipping from clipped audio. Declipping is a

two-step process: 1) detection of the sample indices in

the signal where clipping occurs (clipping detection),

and 2) replacement of the signal values at these indices

with estimates that eliminate or reduce the perception of

clipping without introducing new artifacts (sample

replacement).

Laguna and Lerch An Efficient Algorithm for Audio Declipping

AES 141st Convention, Los Angeles, USA, 2016 September 29–October 2

Page 2 of 10

Figure 1: Soft clipping versus hard clipping.

This paper presents a novel approach to declipping

audio. The proposed algorithm is computationally

efficient compared to existing algorithms and has been

implemented in JavaScript by the authors [2].

The remainder of this paper is structured as follows:

Section 2 explains some properties of clipping, Section

3 describes existing declipping algorithms, Section 4

describes the proposed declipping algorithm, and

Section 5 presents our evaluation and results.

2. PROPERTIES OF CLIPPING

There are two types of clipping: hard clipping and soft

clipping. In hard clipping, any signal values above the

clipping threshold are set to the clipping level. While

easy to detect, this type of clipping is uncommon and

usually occurs in the digital domain. In soft clipping,

signal values above the clipping threshold are driven

near the clipping threshold. If clipping is modeled as a

system mapping the non-clipped input signal to the

clipped output signal, the relation between input and

output is nonlinear and sometimes time-variant. Figure

1 shows the difference between hard clipping and soft

clipping.

Clipping modifies the signal’s amplitude distribution.

Non-clipped audio signals have predictable amplitude

distributions: the distributions are high towards the

mean and near-monotonically decrease towards both

ends. Since hard and soft clipping both drive high

amplitudes down to near the clipping level, a clipped

signal will have a probability distribution where

amplitudes near the clipping level have an unnaturally

high probability. Figure 2 shows the amplitude

Figure 2: Histograms of clipped and non-clipped

signals.

histogram of a signal before clipping, after hard

clipping, and after soft clipping. Notice that in hard

clipping, all of the amplitudes above the clipping level

get placed in a single bin (the bin containing the

clipping level), while in soft clipping, the amplitudes

above the clipping level get placed into a group of bins,

creating a “bump” in the histogram.

Clipping modifies the frequency content of a signal. A

clipped sinusoidal can be modeled as a sinusoidal plus

harmonics occurring at integer multiples of the

frequency of the sinusoidal. In this simple case, clipping

has not modified the frequency content of the signal

below the fundamental frequency. Signals with more

than one frequency component are less easy to analyze

due to intermodulation of frequency components, which

generates inharmonic components at frequencies below

either component. Still, for signals with high bandwidth,

most of the distortion produced by clipping occurs at

and above the original frequency content of the signal.

Clipping is most perceptible when the distortion occurs

in the frequency bands where human hearing is most

sensitive.

0 50 100 150

Time (samples)

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4
A

m
p

lit
u
d

e

soft clipping

hard clipping

-0.4 -0.2 0 0.2 0.4
0

100

200

300

400

500

F
re

q
u
e

n
c
y

Non-Clipped Signal Histogram

-0.4 -0.2 0 0.2 0.4
0

100

200

300

400

500

F
re

q
u
e

n
c
y

Hard Clipped Signal Histogram

-0.4 -0.2 0 0.2 0.4

Amplitude

0

100

200

300

400

500

F
re

q
u
e

n
c
y

Soft Clipped Signal Histogram

Laguna and Lerch An Efficient Algorithm for Audio Declipping

AES 141st Convention, Los Angeles, USA, 2016 September 29–October 2

Page 3 of 10

The phase distortion caused by clipping is not very

perceptible. We performed an informal listening test to

study the perceptual effects of the phase distortion of

clipping. We first clipped 7 audio signals such that 25%

of all samples clipped. Then, we computed the Discrete

Fourier Transform (DFT) of the clipped audio and

original audio (in blocks). We then created a

reconstructed audio file using the magnitudes of the

original audio and the phases of the clipped audio file.

The audio files are available online [2]. The

reconstructed audio files sound nearly identical to the

originals, and we conclude that most of the perceptual

effects of clipping are caused by frequency distortion

(rather than phase distortion).

3. RELATED WORK

3.1. Clipping Detection

While a fair amount of patents on clipping detection

exist, there are relatively few scientific publications on

clipping detection. One possible reason for this is that it

is difficult to formally evaluate a clipping detection

algorithm, as we discuss in the evaluation section.

There are two main approaches to detecting clipping:

histogram analysis [3,4] and time-domain analysis [5].

Histogram-based approaches attempt to locate

abnormalities in the histograms caused by clipping.

Aleinik and Matveev detect soft clipping by searching

for a large section of consecutive increasing values of

histogram bins from middle outward [3]. The algorithm

was evaluated by hard clipping an input signal with the

clipping level set to 75% of the maximum signal level

and simulating soft clipping by low-pass filtering the

signal using forward-backward exponential smoothing.

The authors report a “False Alarm” rate of 0.096 and a

“Right Detection” rate of 0.978. Otani et al. detect

clipping by measuring the difference between the

clipped signal histogram and models of natural signal

histograms based on Laplace and Gamma distributions

[4]. Histogram domain methods work well when the

signal is clipped uniformly over time, but can fail if the

clipping level changes over time or if the number of

clipped samples is much lower than the number of total

samples.

Time-domain approaches rely on the fact that the slope

of the signal during intervals of clipping is relatively flat

and/or that clipping results in discontinuities at the

endpoints of each clipping interval. Since these

approaches analyze the signal sample by sample, they

tend to have fine time resolution. However, false

positives can occur because non-clipped signals

sometimes exhibit the aforementioned characteristic

properties of clipping (relatively sharp increase/decrease

in slope and sections of flatness). These false positives

can be reduced if assumptions can be made about the

shape of the signal. Riemer et al. detect clipping by

applying a differentiator to the signal and detecting

clipping when 1) the derivative is above a certain

threshold and 2) the signal amplitude is close to the

global maximum or minimum [5]. The derivative

threshold is chosen according to the expected frequency

content of the signal. Assumptions such as this cannot

be made for music, which can contain any audible

frequency.

3.2. Sample Replacement

Sample replacement is a popular research topic that

spans not only declipping but also many other

applications including audio restoration and audio/video

streaming (e.g., recovering from packet loss) [1]. Much

research focuses on estimating a single ‘burst’ of

unknown samples when there are many known samples

on either side of the burst. Approaches include time-

domain interpolation [6,8], frequency-domain inter-

polation [9,11], and sparse reconstruction [12,13].

The most common time-domain interpolation methods

model the signal as an autoregressive process and use

linear prediction to fill in the burst. Methods differ in

how they guarantee that the prediction will be

continuous on both sides of the burst. Janssen et al. train

a linear predictor on all known samples and the

estimates are formed by minimizing the estimation error

over all samples in the burst [6]. Esquef et al. train

linear predictors on either side of the burst, and the

results of forward and backward prediction are

crossfaded over the burst [7]. Etter trains linear

predictors on either side of the burst, but a single

estimation is obtained by creating an objective function

that takes both predictors into account [8]. These linear

prediction methods tend to work well with bursts that

are under 20 milliseconds [8]. However, the order of the

autoregressive model highly influences reconstruction

accuracy and is difficult to estimate.

Frequency-domain approaches create estimates for

time-frequency bins instead of samples. Some

Laguna and Lerch An Efficient Algorithm for Audio Declipping

AES 141st Convention, Los Angeles, USA, 2016 September 29–October 2

Page 4 of 10

approaches estimate separate autoregressive models for

each sub-band of the signal [9,10]. Lagrange et al.

handle signals containing vibrato by identifying partials

on each side of the burst and training linear predictive

models on the partials [11]. Some methods, including

Lukin and Todd’s approach, estimate tonal and non-

tonal components of the signal and treat them separately

[10]. Frequency-domain methods are often used to

estimate long bursts, where time-domain methods are

insufficient. One common challenge with using

frequency-domain approaches is that to get a large

enough number of time-frequency bins to do proper

interpolation requires a large number of known samples

on either side of the burst. Locations of clipping are

unpredictable, so these methods are difficult to apply to

declipping.

Recent approaches to declipping use concepts from

compressive sampling [12,13]. Clipped samples can be

ignored and the signal can be interpreted as being

sampled at non-uniform intervals. Then, the best sparse

representation of a signal (in an accordingly sparse

basis, such as the DCT) can be obtained using iterative

optimization such as orthogonal matching pursuit [14].

These methods are relatively robust to different clipping

scenarios, but unfortunately are computationally

expensive, usually having a complexity of O(n3) where

n is the block size.

4. PROPOSED METHOD

We present both a clipping detection algorithm and a

sample replacement algorithm. The algorithms work for

both hard clipped and soft clipped signals. For

multichannel audio, each channel is processed

independently.

4.1. Clipping Detection

The clipping detection algorithm is divided into two

parts: clipping level detection and clipping interval

detection. In clipping level detection, we search for

positive and negative clipping thresholds by looking for

bumps in the clipped signal amplitude histogram (as

depicted in Figure 2). Given these clipping levels, we

then look for sample-accurate locations of clipping

intervals by analyzing the signal in the time-domain.

Clipping level detection occurs in non-overlapping

blocks. This allows us to detect time-varying clipping

levels.

4.1.1. Clipping Level Detection

First, the amplitude histogram is computed with 6000

equally spaced bins that span the amplitude range of the

signal. To remove small, noisy fluctuations in the

histogram, we smooth the histogram by low-pass

filtering it with a forward-backward exponential

smoothing filter. We then compute an adaptive

threshold by filtering the smoothed histogram with a

forward-backward exponential filter with a significantly

lower cut-off frequency. Note that the first pass of

filtering aims to smooth the histogram, while the second

pass aims to create a very slow-changing threshold.

In order to locate the bumps in the histogram, we

compute a novelty function by subtracting the threshold

from the smoothed histogram. The novelty function will

be above zero at the locations of the bumps. The novelty

function might also be slightly above zero at other

locations depending on the input signal. We search the

outermost 10% of the novelty function and track all

intervals of consecutive positive values. These intervals

are candidates which might correspond to the bumps. If

the candidate does correspond to a bump, then it will

have a large area compared to the other candidates.

Therefore, a bump is detected when a candidate has an

area that is 3 standard deviations above average. The

clipping level is determined to be the amplitude

corresponding to the innermost bin in the bump.

If neither a positive nor a negative clipping level was

found, then the algorithm reports that the signal contains

no clipping. This means that this method naturally

handles cases where no clipping occurs. Note that

histogram normalization is not required because the

method only relies on relative values.

4.1.2. Clipping Interval Detection

Given the clipping levels, we then search for the

clipping intervals by analyzing the signal in the time-

domain. Each local maximum above the clipping level

is assigned a clipping interval. The initial endpoints of

this interval are both set to the location of the local

maximum. We attempt to extend the left endpoint by

moving one sample to the left and checking two halting

criteria (explained below). If none of the halting criteria

are met, we continue to move one sample to the left.

The same process is applied to the right endpoint. Any

Laguna and Lerch An Efficient Algorithm for Audio Declipping

AES 141st Convention, Los Angeles, USA, 2016 September 29–October 2

Page 5 of 10

overlapping intervals are merged after all clipping

intervals are computed.

The two halting criteria check whether the clipping

interval meets general assumptions about clipping. The

first criterion checks whether the absolute value of the

derivative of the signal at the current location is above a

threshold. The derivative is computed by taking the

difference between the current sample and the previous

sample (when moving left, the previous sample is

located one sample to the right). This criterion checks if

the slope is flat enough for the sample to be included in

the interval. The second criterion checks whether the

current signal value deviates from the average value of

the samples within the working interval by more than a

threshold. This criterion guards against cases where the

signal has a near-flat slope that never changes, such as a

very low frequency triangle wave.

To set the thresholds for these criteria, we refer to

bumps detected in the histogram during clipping level

detection. Both thresholds are set to half of the width

(units are amplitude) of each bump. Determining these

thresholds based on the bump width is appropriate

because the bump width indicates how much the signal

deviates during clipping.

4.2. Sample Replacement

An overview of the entire replacement process is shown

in Figure 3. To remove clipping, we first divide the

clipping intervals into short intervals and long intervals.

We interpolate the short intervals in the time-domain

using cubic spline interpolation. The signal is then split

into a low-frequency band and a high-frequency band.

Samples in the high-frequency band are replaced by

linearly interpolating time-frequency bin magnitudes.

The low-frequency band remains untouched. Finally, we

recombine the low-frequency band and the processed

high-frequency band.

A frequency-domain approach to declipping presents

challenges because frequency transformations require

many consecutive samples and there are no guarantees

about the number of consecutive non-clipped samples

surrounding each clipping interval. On the other hand,

time-domain approaches require parametrization, for

example, the order of an autoregressive model, which, if

set incorrectly, often causes large reconstruction error.

Figure 3: Block Diagram of sample replacement

Since our algorithm must handle any musical signal, it

is desirable for our algorithm to be as general as

possible. Therefore, we prefer a frequency-domain

approach over a time domain approach. We consider

sparse reconstruction approaches too computationally

expensive for our purposes (see Section 5.3.2);

therefore, our approach uses frequency domain analysis.

To facilitate a frequency-domain approach to

declipping, we first replace short clipping intervals in

the time domain. This results in more consecutive non-

clipped samples, which increases the number of

locations where clean frequency transforms are

possible.

4.2.1. Replacing Short Intervals

We replace short intervals using cubic spline

interpolation. We give the cubic spline interpolator at

most 20 samples on either side of the clipping interval.

If either side of the clipping interval contains less than 3

samples, we do not interpolate.

Replace Short Bursts

Split Signal Into Low And High
Frequency Bands

Estimate Time-Frequency
Bins Of Clipped Blocks

FFT Transform

Inverse FFT Transform

Recombine Bands

Replace Long Bursts

Laguna and Lerch An Efficient Algorithm for Audio Declipping

AES 141st Convention, Los Angeles, USA, 2016 September 29–October 2

Page 6 of 10

4.2.2. Replacing Long Intervals

Splitting Signal into Bands

As described in Section 2, the distortion introduced by

clipping mostly resides in high frequencies. Thus, we do

not process the low frequencies; we split the signal into

a low-frequency band (0-100 Hz) and a high-frequency

band (100 Hz-Nyquist) and only process the high-

frequency band. To split the audio signal into bands, we

first create the low-frequency band by applying a low-

pass filter to the signal (note that the signal has already

had its short clipping intervals replaced). We create the

high-frequency band by subtracting the low-frequency

band from the original signal. After processing, we

combine bands by adding the processed high-frequency

band to the low-frequency band.

It is important to note that filtering the signal modifies

the locations where clipping occurs: the clipping

intervals get smeared out and could be extended by up

to the length of the filter’s impulse response. With this

in mind, we designed an FIR filter with an impulse

response length of 25. The filter’s cutoff frequency is

100 Hz, and the filter is designed to be as steep as

possible given its order. We apply the filter forwards

and backwards to ensure that the filter is zero phase.

Because the filter is zero phase, the midpoints of the

clipping intervals do not change. Since the support of

the filter’s impulse response spans from sample -25 to

25, we extend the clipping intervals by 25 samples on

either side after filtering.

Frequency Magnitude Interpolation

After replacing short intervals, there are generally

enough non-clipped samples to analyze the signal in the

frequency-domain. However, if we use a standard

approach to blocking the signal, there might be very few

blocks that contain no clipped samples. Figure 4

illustrates a case where not very many samples are

clipped, yet with a desired 50% overlap between blocks,

there is only one block that has no clipped samples.

However, if we allow block locations to be anywhere

and zero pad shorter blocks to a standard FFT size, there

are many locations where it is possible to take an FFT.

To replace long intervals in the high-frequency band,

we first block the signal with a block size N = 512 and

Figure 4: Example of linear interpolation with an

overlap of 50%.

75% overlap. We aim to estimate the magnitudes and

phases for each block containing any clipped samples.

After obtaining the estimates, we can inverse FFT the

estimates and overlap-add to reconstruct the time

domain signal.

As mentioned in Section 2, clipping has a negligible

perceptual effect on the phase content of the signal, so

we use the phase of the current clipped block in our

reconstruction.

The magnitude of a clipped block is estimated by

linearly interpolating between the magnitudes of the two

closest reliable blocks. Reliable blocks are located by

searching for the nearest interval of at least N / 4

consecutive non-clipped samples. To take the FFT of a

reliable block with M < N samples, we first window the

reliable block and then zero pad. We normalize the

resulting FFT by multiplying by the following scalar:

𝑠 = 𝑒𝑙𝑜𝑔𝑒(∥𝑤𝑎∥)−𝑙𝑜𝑔𝑒(∥𝑤𝑏∥) (1)

The L2-norm is used in this equation; 𝑤𝑎 is the N-point

window function, 𝑤𝑏 is the M-point window function.

There are occasions when linear interpolation of

magnitudes causes artifacts. Most notably,

overestimation of magnitudes during blocks containing

clipped transients can cause the transients to sound

tonal, resulting in ‘blips’ during high hat and snare hits.

To reduce this artifact, we upper bound each estimated

magnitude by the magnitude of the corresponding bin in

the clipped block.

Clipping Detection Results

Time

A
m

p
li

tu
d

e

Valid

Blocks

Desired

Blocks

- clipping interval

- clipped block

- reliable block

Laguna and Lerch An Efficient Algorithm for Audio Declipping

AES 141st Convention, Los Angeles, USA, 2016 September 29–October 2

Page 7 of 10

Algorithm Clipping Level Histogram Block Length Precision Recall F-measure

Histogram 95th Percentile File 0. 937 0. 889 0. 911

Histogram 95th Percentile 3 Seconds 0.937 0.892 0.914

Histogram 90th Percentile File 0.942 0.840 0.881

Histogram 90th Percentile 3 Seconds 0.947 0.880 0.912

Combined 95th Percentile File 0.941 0.910 0.925

Combined 95th Percentile 3 Seconds 0.940 0.908 0.922

Combined 90th Percentile File 0.950 0.902 0.925

Combined 90th Percentile 3 Seconds 0.945 0.862 0.894

Table 1: Clipping detection results.

5. EVALUATION

5.1. Clipping Detection

5.1.1. Evaluation Methodology

Evaluating the detection of soft clipping is problematic

because it is difficult to record soft clipping with

corresponding sample-accurate ground truths of

clipping indices. Existing research either simulates soft

clipping in software [3] or does not include a formal

evaluation of their algorithm [5]. To properly evaluate

with soft clipped signals, a method would be required

that is able to record clean audio data and corresponding

soft clipped audio time-aligned and phase-aligned to

near-sample accuracy in order to reliably annotate

clipping interval locations.

For our evaluation, we simulate soft clipping by

digitally hard clipping a signal (and saving the clipping

locations), and then encoding the clipped signal using a

lossy codec. When a hard clipped signal goes through a

lossy encoder, the clipped sections of the signal are

modified, as these segments of audio are the most

difficult to encode (the frequency-domain is least sparse

at sharp edges). The soft clipped signal in Figure 1 was

generated by encoding the hard clipped signal in Figure

1 with FFmpeg’s AAC encoder using a variable bit rate

(VBR) quality of 5.

To evaluate, we run our clipping detection on the

resulting audio files and take the precision, recall, and f-

measure of the clipping indices. We use the dataset

published by Homburg et al. for evaluation [15]. This

dataset contains 1886 10-second excerpts of songs from

9 musical genres. The audio files are encoded as

MPEG-1 layer 3 files at 44.1 kHz/128 kb. This dataset

is chosen because it covers a wide range of musical

styles.

We run the evaluation with different amounts of

clipping, different block sizes, and with different

versions of the algorithm. The clipping levels should be

chosen such that the amount of clipping is comparable

between audio files. Clipping based on a percentage of

the maximum amplitude does not normalize for amount

of clipping because different signals have different

amounts of dynamic variation. Instead, we choose our

clipping level based on a percentile of the amplitude

distribution in the signal. This guarantees that the same

number of samples clip in each audio file. Because the

amount of perceptual clipping also depends on the

frequency content of the signal, choosing the clipping

level based on amplitude percentile does still not

guarantee equal amounts of perceptual clipping.

Preprocessing such as filtering the input by the inverse

spectral envelope might be worth investigating, but was

considered excessive for this evaluation.

Running the evaluation with different block sizes allows

us to verify that the system can be used when the

clipping level is time-variant.

We also compare results using the clipping interval

detection (combined) vs. only using clipping level

detection (histogram). When only using clipping level

Laguna and Lerch An Efficient Algorithm for Audio Declipping

AES 141st Convention, Los Angeles, USA, 2016 September 29–October 2

Page 8 of 10

Figure 5: Total harmonic distortion of

reconstruction on sinusoidal input.

detection, clipping is detected at each sample with an

amplitude above the clipping level.

5.1.2. Evaluation Results

Results from our clipping detection evaluation are

shown in Table 1. The algorithm performs with an f-

measure of 0.91 in most cases.

In all experiments, precision (~0.94) is higher than

recall (~0.90). One explanation for this is that we

choose the clipping level to be the innermost bin in the

bump. It is possible that the amplitudes placed in bins

on the inner half of the bump sometimes correspond to

clipped regions of the signal and other times correspond

to non-clipped regions of the signal. If this is the case,

then there is an inherent tradeoff between precision and

recall for these regions of the signal. Here, precision is

considered more important than recall because we wish

to replace all clipped regions of the signal, which can be

done without knowledge of all non-clipped regions of

the signal.

The following observations can be made by comparing

results of different experiments. Firstly, experiments

with different amounts of clipping have similar

precision, recall, and f-measure. This indicates that the

clipping level estimate is equally reliable regardless of

the size of the bumps in the histogram. Secondly,

precision, recall, and f-measure are similar between

experiments using block-level histograms and

experiments using file-level histograms. This indicates

that the clipping detection algorithm can be used on

time varying clipping. Thirdly, recall tends to improve

when using clipping interval detection. This reinforces

our claim that time-domain analysis can help find the

Figure 6: Clean, clipped, and reconstructed speech

signal waveforms.

accurate boundaries of clipping, which is especially

useful for reducing false positives.

It is worth mentioning that lossy encoding might

slightly alter the locations of clipping, which could

impact the results of our evaluation.

5.2. Sample Replacement

5.2.1. Evaluation Methodology

Objectively evaluating sample replacement is also

problematic because the goal is to measure the

perceptual difference between the clipped and

reconstructed signals. Here, we base our evaluation off

of the standard audio distortion measurement metric

tonal harmonic distortion (THD), and we provide some

declipping listening examples online [2].

We compare the total harmonic distortion (THD) of a

clipped sinusoidal before and after sample replacement.

We soft clip (as in Section 5.1.1) the sinusoidal input at

the 90th percentile and run sample replacement using the

ground truth clipping locations. The signal is 2 seconds

long and sampled at 44.1 kHz. We test the performance

of replacing short intervals (cubic spline interpolation)

and replacing long intervals (frequency magnitude

interpolation) separately. When testing long interval

replacement, we also pad the input with one second of a

non-clipped sinusoidal before and after the clipped

region. Without this padding, there would be nowhere in

the signal where a clean FFT is possible (note that using

our algorithm, a clipped sinusoidal would normally be

declipped in the time domain, but here we are interested

in evaluating the frequency domain interpolation). The

padding is removed before measuring the THD.

 500 700 1000 2000 3000 5000

Frequency

-120

-100

 -80

 -60

 -40
T

H
D

 (
d
B

c
)

Clipped
Time Method
Frequency Method

Laguna and Lerch An Efficient Algorithm for Audio Declipping

AES 141st Convention, Los Angeles, USA, 2016 September 29–October 2

Page 9 of 10

Figure 7: Clean, clipped, and reconstructed speech

signal spectrograms.

5.2.2. Evaluation Results

THD results are shown in Figure 5. Both time domain

and frequency domain methods are shown to improve

the signal THD. The time domain reconstruction THD

increases as frequency increases. This is because the

number of samples in a single period decreases as

frequency increases, and therefore a greater

interpolation accuracy is necessary for higher

frequencies to maintain a constant THD. This is an

artifact of sampling; if the experiment is run with a high

enough sample rate (e.g., 192 kHz), then the time

domain reconstruction THD is constant with respect to

frequency, remaining near -70 dB.

The frequency domain reconstruction THD decreases as

frequency increases. This is due to phase differences

between the clipped and the original sinusoidal. In order

to verify this, the original phase of the sinusoidal was

used, and the resulting THD was relatively constant

with respect to frequency (approximately -90 dB).

The frequency domain approach obtains a lower THD

than the time domain approach across frequencies.

However, the frequency domain approach required extra

information (a clean signal before and after clipping) in

order to function properly. This validates our two-stage

approach to sample replacement.

Results for sinusoidals are not necessarily generalizable

to high bandwidth signals. The next section briefly

illustrates the algorithm performance on real world

signals.

5.3. End to End System Evaluation

5.3.1. Declipping On Real World Signals

To illustrate the performance of our algorithm on a real-

world signal, we visualize the waveform and

spectrogram of a clean, clipped, and declipped speech

signal. Figure 6 shows the signal waveforms. The

waveform of the declipped signal matches the general

shape of the clean signal, although the reconstruction

peaks tend to have a lower magnitude than the clean

peaks. Figure 7 shows the signal spectrograms. From

the spectrogram of the clipped signal, the high-

frequency distortion caused by clipping is clearly

visible. It can be seen from the reconstruction

spectrogram that this distortion is mostly removed;

however, the higher partials of speech are occasionally

missing.

5.3.2. Computation Speed

The proposed algorithm is computationally efficient.

We ran the web app implementation of the algorithm on

a 2-minute long stereo audio file sampled at 44100 kHz.

The experiment was run using a 2012 MacBook Pro

with a 2.9 GHz quad-core processor and Google

Chrome. The algorithm took 7 minutes to finish. This is

a major improvement over existing declipping

algorithms: we implemented a method similar to [9] in

Matlab, and it took roughly 2.5 hours to process 5

seconds of audio.

6. CONCLUSION

We present an efficient algorithm for end to end

declipping. The algorithm works for hard clipping and

Laguna and Lerch An Efficient Algorithm for Audio Declipping

AES 141st Convention, Los Angeles, USA, 2016 September 29–October 2

Page 10 of 10

soft clipping as well as for clipping thresholds changing

over time. The clipping detection algorithm

supplements histogram analysis with time domain

analysis in order to reduce false positives. Our two-pass

sample replacement algorithm demonstrates that

frequency domain approaches can be applied to

declipping even though locations of clipping are

unpredictable. Frequency domain approaches to

declipping are inherently less computationally

expensive than sparse reconstruction approaches, which

cannot take advantage of FFT optimizations; therefore,

it is worthwhile to continue investigation of frequency

domain approaches to declipping.

7. REFERENCES

[1] S. Godsill, P. Rayner, “Digital audio restoration,”

New York: Springer, 1998.

[2] C. Laguna, A. Lerch, “ClipAway,” http://cplaguna-

audio.github.io/ClipAway, 2016 (accessed 01 May

2016).

[3] S. Aleinik, Y.N. Matveev, “Detection of clipped

fragments in speech signals,” in Int. J. Electr.

Electron. Sci. Eng., 2014, pp.74–80.

[4] T. Otani, M. Tanaka, Y. Ota, S. Ito, “Clipping

Detection Device and Method,” US Patent

20100030555 A1, Int. Cl. G10L 21/02, 2010.

[5] T. E. Riemer, M. S. Weiss, M. W. Losh, “Discrete

clipping detection by use of a signal matched

exponentially weighted differentiator,” in

Southeastcon’90. Proceedings., IEEE, 1990, pp.

245–248.

[6] A. Janssen, R. Veldhuis, L. Vries, “Adaptive

interpolation of discrete-time signals that can be

modeled as autoregressive processes,” IEEE

Transactions on Acoustics, Speech and Signal

Processing, vol. 34, no. 2, pp. 317–330, Apr. 1986.

[7] P. A. Esquef, V. Välimäki, K. Roth, I. Kauppinen,

“Interpolation of long gaps in audio signals using

the warped burg’s method,” in Proc. of the 6th

International Conference on Digital Audio Effects

(DAFx-03), 2003, pp. 08–11.

[8] W. Etter, “Restoration of a discrete-time signal

segment by interpolation based on the left-sided

and right-sided autoregressive parameters,” IEEE

Transactions on Signal Processing, vol. 44, no. 5,

pp. 1124–1135, 1996.

[9] L. W. P. Biscainho, P. S. R. Diniz, P. A. A. Esquef,

“ARMA processes in sub-bands with application to

audio restoration,” in Proc. of the 2001 IEEE

International Symposium on Circuits and Systems,

2001, ISCAS 2001, 2001, vol. 2, pp. 157–160 vol.

2.

[10] A. Lukin, J. Todd, “Parametric Interpolation of

Gaps in Audio Signals,” Audio Engineering Society

Convention 125, pp. 3-6, 2008.

[11] M. Lagrange, S. Marchand, J.-B. Rault, “Long

Interpolation of Audio Signals Using Linear

Prediction in Sinusoidal Modeling,” Journal of the

Audio Engineering Society, 2005, vol. 53, no. 10,

pp. 891–905.

[12] A. Adler, V. Emiya, M. G. Jafari, M. Elad, R.

Gribonval, M. D. Plumbley, “Audio Inpainting,”

IEEE Transactions on Audio, Speech, and

Language Processing, vol. 20, no. 3, pp. 922–932,

Mar. 2012.

[13] B. Defraene, N. Mansour, S. De Hertogh, T. van

Waterschoot, M. Diehl, M. Moonen, “Declipping of

Audio Signals Using Perceptual Compressed

Sensing,” IEEE Transactions on Audio, Speech,

and Language Processing, vol. 21, no. 12, pp.

2627–2637, Dec. 2013.

[14] Y. C. Pati, R. Rezaiifar, P. S. Krishnaprasad,

“Orthogonal matching pursuit: recursive function

approximation with applications to wavelet

decomposition,” in 1993 Conference Record of The

Twenty-Seventh Asilomar Conference on Signals,

Systems and Computers, 1993, 1993, pp. 40–44

vol.1.

[15] H. Homburg, I. Mierswa, B. Moller, K. Morik, M.

Wurst, “A Benchmark Dataset for Audio

Classification and Clustering,” Proc. of the

International Symposium on Music Information

Retrieval 2005, pp. 528-531, 2005.

