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ABSTRACT

Assessment of students’ music performances is a subjective task that requires the judgment of technical correctness
as well as aesthetic properties. A computational model automatically evaluating music performance based on
objective measurements could ensure consistent and reproducible assessments for, e.g., automatic music tutoring
systems. In this study, we investigate the effectiveness of various audio descriptors for assessing performances.
Specifically, three different sets of features, including a baseline set, score-independent features, and score-based
features, are compared with respect to their efficiency in regression tasks. The results show that human assessments

can be modeled to a certain degree, however, the generality of the model still needs further investigation.

1 Introduction

The qualitative assessment of music performance is an
essential pedagogical component when learning a mu-
sical instrument. It requires the observation, quantifi-
cation, and judgment of characteristics and properties
of a music performance. This is inherently subjec-
tive — the teacher’s assessment might be impacted by
many contextual and even non-musical considerations.
Wesolowski et al. point out that raters may vary sig-
nificantly in terms of their severity, rating scale, and
interpretation of rating categories [1]. In addition, the
bias of the human raters and closely related rating cate-
gories could, according to Thompson and Williamon,
adversely affect the discriminability and fairness of
the assessment [2]. As a result, the objectivity and re-
producibility of human assessment can be questioned.
However, an overall assessment is still often desired

or required, e.g., for rating a student in an audition.
A computational approach to quantitatively assessing
student music performance could provide objective,
consistent, and repeatable feedback to the student. It
can also enable qualitative feedback to the student in
situations without a teacher such as in practice sessions.

The realization of automatic systems for music per-
formance assessment generally requires knowledge
from multiple disciplines such as digital signal process-
ing, musicology, and music psychology. With recent
advances in Music Information Retrieval (MIR) [3],
which involves the study of the above mentioned fields,
noticeable progress has been made in related research
topics such as source separation [4] and music tran-
scription [5]. Examples of MIR-approaches applied to
music education have been summarized by Dittmar et
al. [6]. In addition to academic research, commercial
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systems such as Smart Music! and Yousician? are avail-

able. Despite these efforts, identifying a reliable and
effective method for assessing music performances re-
mains an unsolved topic and requires further research.

In this paper, we explore the effectiveness of various ob-
jective descriptors by comparing three sets of features
extracted from the audio recording of a music perfor-
mance, a baseline set with common low-level features,
a score-independent set with designed performance fea-
tures, and a score-based set with designed performance
features. The goal is to identify a set of meaningful ob-
jective descriptors for the general assessment of student
music performances.

This paper is structured as follows: in Sect. 2, the re-
lated work on objective music performance assessment
is introduced. The methodology is mentioned in Sect. 3,
and the dataset used in this work is described in Sect. 4.
Sect. 5 includes the experiment setup and results. Fi-
nally, the discussion and conclusion are presented in
Sects. 6 and 7, respectively.

2 Related work

Music performance analysis deals with the observation,
extraction, description, interpretation, and modeling of
music performances [7]. Even before the age of the
computer, Seashore points out the value of scientific
observation of performances for music education [8].
Automatic performance analysis was introduced to the
classroom as early as 1971 when products like the
IBM-1500 instructional system spearheaded computer-
assisted (music) education [9].

Performance analysis may or may not use the musical
score in addition to the audio input. Approaches that
do not require the score make sense in a setting where
the score is not available, including improvisation or
free practice. It can also be argued that humans can,
at least to a certain degree, assess the proficiency of
a music student without prior knowledge of the piece
being played; a machine learning model should the-
oretically be able to do the same. Nakano presented
an automatic system to evaluate user’s singing skills
without any score input [10], in which a singing per-
formance is classified as good or poor using features
such as pitch accuracy and vibrato length. Romani et
al. developed a software tool that assesses the sound

lywww . smartmusic.com Last Access: 2017/01/23
2yww.yousician.com Last Access: 2017/01/23

quality of a performer in real-time by analyzing the
audio, note by note, in order to assess the stability and
tonal richness of each individual note and reports an
overall goodness score [11]. Isabel et al. present a
score-independent algorithm to identify the technique
that a violin performer is using such as pizzicato and
vibrato using pitch and envelope features [12]. Musi-
cal expressions of four types (happy, sad, angry, and
calm) were classified by Mion and De Poli [13]. They
extracted instantaneous and event-based features such
as spectral centroid, residual energy, and notes per sec-
ond from violin, flute, and guitar performances. They
argue that a known mapping of physical properties of
sound to expressive properties of a performance can
support effective querying in music retrieval systems.
Han and Lee proposed an instrument specific approach
to identify common mistakes of beginner flute players.
The system was designed to detect incorrect assem-
bly of the flute, poor blowing, and mis-fingering [14].
More recently, Wu et al. have proposed the automatic
assessment of students’ instrumental performances us-
ing score-independent audio features based on pitch,
amplitude and rhythm histograms [15]. The results of
a trained regression model showed reasonable correla-
tion between model output and subjective assessments
by human judges.

While the above approaches emphasize the use of score-
independent features, it is common for beginner or in-
termediate students to practice on a well-known musi-
cal piece with readily available score. Therefore, many
approaches take advantage of this additional score in-
formation. AbeBer et al. proposed a system that auto-
matically assesses the quality of vocal and instrumental
performances of 9th and 10th graders [16]. Score-based
features like pitch, intonation and rhythmic correctness
were designed to model the experts’ ratings with a four-
class classifier (rating scale: 1-4). They report the
system to be able to classify the performances mostly
correct with some confusion between adjacent ratings.
A score-informed piano tutoring system has been pre-
sented by Fukuda et al. [17]. It applies automatic music
transcription and audio-to-score alignment to detect
mistakes in the performance. Schramm et al. use pitch
deviations, onset and offset time deviation information
annotated from student performances to create a model
to classify correct or incorrect notes using a Bayesian
classifier. Devaney et al. have created a performance
analysis toolkit for ensemble singing by aligning the
audio to the midi score and extracting pitch, timing and
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Fig. 1: Block diagram of the experimental setup

dynamics features [18]. The algorithm uses a Hidden
Markov Model (HMM) model, trained to detect silence,
transient and steady state, in addition to Dynamic Time
Warping (DTW) to align the score to the pitch contour
of the performance. This study reports a trend of the
intonation change by the singers in 4 ensembles which
can be further used to provide overall assessment of
how well one ensemble performed with respect to the
other. Mayor et al. have proposed a system for assess-
ing a singer and providing feedback not only via a final
evaluation of the performance but also through real-
time feedback about expressivity, tuning and timing
[19]. Their system makes use of a reference MIDI
track which they align with the user’s pitch contour.
For expression, they define a set of audio features that
uniquely identify each expression; an HMM is used
to segment the performance into different expression
regions. Tsai and Lee proposed a method for karaoke
singing evaluation which provides ratings for users’
singing performances on pitch, rhythm and loudness
[20]. For pitch ratings, the DTW distance is computed
between the pitch contour of user performance and ref-
erence audio after removing the background accompa-
niment using spectral subtraction. For rhythm ratings,
the synchronicity between the singing and the accom-
paniment is measured. For volume ratings, the DTW
distance between the short-term log-energy sequence
of both audio is used.

3 Method

A block diagram of the method is shown in Fig. 1.3 A
pre-processing step involves downmixing and normal-

3The corresponding source code is available online at
www.github.com/GTCMT/FBA2013

ization of the audio signal.
3.1 Feature extraction

The recording will be represented by three sets of fea-
tures: (i) baseline: a set of low-level features commonly
used in MIR tasks [21, 7], (ii) score-independent: a set
of designed features working with the audio signal
without knowledge of the musical score, and (iii) score-
based: a set of designed features extracted after align-
ing the audio with the musical score. The pitch contour
of the recordings, required for the designed features, is
extracted using a simple autocorrelation-based pitch-
tracking method.

3.1.1 Baseline features

The baseline feature set consists of 13 Mel Frequency
Cepstral Coefficients (MFCCs), zero-crossing rate,
spectral centroid, spectral rolloff, and spectral flux. The
implementation of these common features follow the
definitions in [7] (see also the online repository*). To
represent each recording with one feature vector, a two-
stage feature aggregation process is applied. In the first
stage, the block-wise features are aggregated and rep-
resented by their mean and standard deviation within
a 250 ms texture window. In the second stage, these
texture window level features are aggregated over the
entire audio file and represented by their mean and stan-
dard deviation. This results in a single feature vector
with a dimensionality of dg = 68 per recording.

4www.github.com/alexanderlerch/ACAfCode
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3.1.2 Score-independent features

The score-independent feature set is designed to rep-
resent the performance accuracy with respect to pitch,
dynamics, and rhythm. If not otherwise mentioned,
the features are extracted at the note-level and then
aggregated across all the notes. In order to compute
note-level features, the pitch contour is segmented into
notes by using the edges between the adjacent notes as
the onsets.

Pitch The pitch features are extracted from the pitch
contour. The features are:

e note steadiness (dp1 = 2): For each note, the stan-
dard deviation of pitch values and the percentage
of pitch values deviating from the mean by more
than one standard deviation are computed. These
two features are designed to represent fluctuations
in the pitch of a note.

e average pitch accuracy (dy; = 1): The histogram
of the pitch deviation from the closest equally tem-
pered pitch is extracted with a 10 cent resolution.
The feature is the area around the bin with highest
count (width: 30 cent) of this histogram. This fea-
ture characterizes the pitch deviation of the notes
played.

e percentage of in-tune notes (dp3 = 1): Each note is
labeled either in-tune or detuned, and the percent-
age of correct notes across the entire exercise is
computed as the feature. A note is labeled correct
if the percentage of pitch values with a deviation
from the mean pitch is lower than a pre-defined
threshold.

Dynamics Similar to the pitch features, these fea-
tures use the note segmentation in order to compute per
note features that can then be aggregated.

e amplitude deviation (d,; = 1): This feature aims
to find the uniformity of the Root Mean Square
(RMS) per note. For each note, the standard devi-
ation of the RMS is computed.

e amplitude envelope spikes (d;; = 1): This fea-
ture describes the spikiness of the note amplitude
over time. The number of local maxima of the
smoothed derivative of the RMS is computed per
note.

Rhythm  The rhythm features are computed from the
Inter-Onset-Interval (I0OI) histogram (with 50 bins) of
the note onsets.

e timing accuracy (d. = 6): The standard statisti-
cal measures of crest, skewness, kurtosis, rolloff,
tonal power ratio, and the histogram resolution are
extracted from the histogram.

For all note level features, the mean, maximum, min-
imum, and standard deviation is computed across all
notes to represent the recording. This results in an
overall number of features of

dst :4-dp1+dp2+dp3 +4-dy1+4-dp+d =24

3.1.3 Score-based features

The set of score-based features is extracted utilizing
score information by aligning the extracted pitch con-
tour to the sequence of pitches from the score with
DTW. Before aligning the pitch contour, the tuning
frequency is estimated using the mode of the pitch his-
togram. The pitch contour is subsequently shifted by
the tuning frequency estimate. The output of the DTW
is an accurate segmentation into notes, combined with
the knowledge of the actual note length in beats from
the score. Some of the presented features are similar to
the score-independent features, with the notable differ-
ence that in this case, the reference is the actual score
value rather than, e.g., the closest pitch on the equally
tempered scale.

e note steadiness (d, = 12): The mean, standard
deviation and the percentage of pitch values devi-
ating more than one standard deviation from the
expected midi pitch are computed (compare: dp.
Of these three features, aggregate values over all
the notes in the performance are computed in the
form of mean, standard deviation, maximum, and
minimum value. These features are designed to
capture the accuracy of the student’s intonation.

o duration histogram features (dq = 6): This feature
uses the distribution of note lengths played by the
students for the one most frequently occurring
note length in the score (e.g., quarter note). We
compute the histogram (50 bins) of the durations
for these notes as played by the student. The same
standard statistical measures as introduced for the
score-independent timing accuracy features are
extracted.
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o DTW based features (dgww = 2): The DTW align-
ment cost normalized by the DTW path length and
the slope deviation of DTW path from a straight
line are used to capture how close the pitch con-
tour fits the MIDI pitches from the score.

e note insertion ratio (dn;; = 1): The note insertion
happens when an intended note in the score is
separated into multiple segments by silences due
to student’s playing. The duration ratio of total
silences to the total pitched region across all the
notes is used as a feature.

e note deletion ratio (dyg; = 1): Note deletions are
found by by detecting notes with duration less
than 17ms (3 frames) in student’s playing. The
duration ratio of these notes to the total pitched
region in the student’s performance is used as a
feature.

The overall number of score-based features is

dsp = dy +dq + dgw + dyir + dngr = 22

3.2 Regression

Using the extracted features from the audio signals, a
Support Vector Regression (SVR) model with a linear
kernel function is trained to predict the human expert
ratings. The libsvm [22] implementation of this model
is used with default parameter settings. A Leave One
Out cross-validation scheme is adopted along with 5%
outlier removal to train a model with 2 years of data
and test it on the remaining year. Thus, there are 3 com-
binations of train and test sets. We report the average
test evaluation values over each year as the test year.
Predicted values that exceed the range of the allowed
scores are truncated to O or 1.

4 Dataset

The dataset used for this study is provided by the
Florida Bandmasters Association (FBA). The dataset
has audio recordings of students and accompanying
assessments from expert judges of the Florida all-state
auditions for three years (2013-2015). There are three
groups of students: middle school (7th & 8th grade),
concert band (9th & 10th grade), and symphonic band
(11th & 12th grade). Auditions are conducted for 19
types of instruments. The pitched instrument audition
includes 5 different exercises, namely lyrical etude,
technical etude, chromatic scale, 12 major scales, and

Table 1: Per year statistics of the used audio recordings

Total Average
Year Duration (s) Duratiorgl (s) #Students
2013 3997 32.7 122
2014 4605 30.9 149
2015 2991 24.3 123

sight-reading. The musical score of the technical ex-
ercise is announced by the FBA. For each exercise,
the judges use assessment categories such as musical-
ity, note accuracy, rhythmic accuracy, tone quality,
artistry, and articulation. The maximum score given
by the judges for each of the exercises varies from 5 to
40. In our experiments, all of the ratings are normalized
to a range between 0 and 1, with 0 being the minimum
and 1 being the maximum allowed score. The audio
recordings have a sampling rate of 44100 Hz and are
encoded with MPEG-1 Layer 3.

To narrow the scope of this study, only a small subset
of this dataset is used. We are focusing on the technical
exercise played by the middle school student perform-
ers for the instrument Alto Saxophone. This instrument
was selected because it has comparably high number
of students. The judges’ assess the categories musical-
ity, note accuracy, rhythmic accuracy, and tone quality.
There are a total 394 students performing with an aver-
age performance length of approx. 30s. Table 1 shows
additional details of the used part of the dataset.

5 Experiment

The suitability of the 3 feature sets is investigated
by comparing the regression model outputs with the
ground truth expert assessments for all categories: mu-
sicality (L1), note accuracy (L2), rthythmic accuracy
(L3), and tone quality (L4).

5.1 Experimental setup

We conduct 5 experiments:

E1: baseline features,

E2: score-independent features,

E3: score-based features,

E4: score-independent plus score-based features,
E5: score-independent plus score-based features
evaluated on the combined dataset.
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We did not perform experiments with the combination
of all feature sets due to the high dimensionality of
the combined set. Each experiment is carried out with
3-fold cross validation. In the first four experiments
(E1-EA4) the regression model is trained on two years
and tested on the remaining year. The average perfor-
mance over the three years is reported as final result.
In the ES experiment set, the 3 folds contain approx-
imately the same amount of data from each year. An
outlier removal process is included in the training. This
process removes the training data with the highest pre-
diction residual (prediction minus actual rating); it is
repeated until 5% of the data are eliminated. By remov-
ing the outliers, the regression models should be able
to better capture the underlying patterns in the data.

5.2 Evaluation metrics

The performance of the models is investigated using the
following standard statistical metrics: the Pearson cor-
relation coefficient r and the R? value. These metrics
are commonly used to evaluate the strength of the rela-
tionship between the regression predictions and ground
truth. Details of the mathematical formulations can be
found in [23].

6 Results & Discussion

The results of experiments E1 to ES are presented in
Table 2 using the metrics introduced above. All correla-
tion results, except E1 for labels L1, L2, L3 and E2 for
label L2, are significant (p < 0.05). All results have a
standard error less than 0.2.

As expected, the results show that the baseline features
(E1) are clearly outperformed by the other feature sets
with designed features (E2-ES5). The baseline features
are essentially unable to capture useful information
for the assessment of student performances. Baseline
features are seen to show some correlation with L4,
suggesting that some limited meaning with respect to
tone quality can be captured.

The score-based features (E3) show generally higher
correlation coefficients than the score-independent fea-
tures (E2) in all the assessment categories. This is
expected as the score-based features should be able
to model the assessments better due to the additional
score information.

Table 2: Result table to compare the experiments. La-
bels L1, L2, L3, L4 correspond to musicality,
note accuracy, rhythmic accuracy and tone
quality

Label L1 L2 L3 L4
r 0.19 007 0.14 021

E1l

Rsq -0.51 -0.15 -0.48 -0.43
E2 r 049 025 034 031
Rsq 004 -0.16 -0.25 -0.30
E3 r 056 042 039 0.39
Rsq 0.13 013 -0.08 -0.09
E4 r 0.58 037 047 042
Rsq 0.05 -0.03 -0.02 -0.14
E5 r 064 037 0.60 0.46

Rsq 033 005 034 0.13

The correlation coefficient increases for rhythmic accu-
racy (L3) when score-based and score-independent fea-
tures are combined (E4). Interestingly, this is not true
for the category note accuracy (L2) and only marginally
true for musicality and tone quality. Investigating this
result, we found that the results for the year 2014 are
responsible for the drop: It turns out that the regres-
sion output is unreliable because of different feature
ranges between training set (2013 and 2015) and test
set (2014) in this case. This indicates that this training
set might not be representative enough; possibly, the
different musical pieces impact the score-dependent
features more significantly than expected. Other possi-
ble reasons include the designed features being unable
to model the L2 category or the ground truth some-
how being unreliable for this year. In addition, not
much improvement is seen in E4 for the musicality
label. The minimal increase in E4 for musicality (L1)
and tone quality (L4) could hint at redundancies be-
tween features sets, incomplete feature sets (missing
features to model important characteristics of the per-
formance), varying sound quality of the recordings, or
disagreement on the definition and assessment of broad
categories such as musicality and tone quality.

The experiment ES shows improved Rsq and corre-
lation values for L1, L3, L4. These results clearly
indicate that a large and representative training set is
necessary and helpful. There is no difference in corre-
lation for note accuracy, suggesting the need to look
into feature normalization or other possible issues with
the data for the year 2014.
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7 Summary & Conclusion

The goal of this study is to investigate the power of
custom-designed features for the assessment of student
music performances. More specifically, we compare a
baseline feature set (low-level instantaneous features)
with both score-independent and score-based features.
The data used in this study covers Alto Saxophone
recordings of three years of student auditions rated by
experts in the assessment categories of musicality, note
accuracy, thythmic accuracy, and tone quality.

As expected, the baseline features are not able to cap-
ture any qualitative aspects of the music performance
so that the regression model mostly fails to predict the
expert assessments in all categories (except, to a lim-
ited degree, for tone quality). Score-based features are
shown to represent the data generally better than score-
independent features in all categories. The combination
of score-independent and score-based features show
some trend to improve results, but the gain remains
small, hinting at redundancies between the feature sets.
The tone quality category seems to require additional
features to be properly modeled; possible candidates
include note-based timbre features.

Overall, the best results for all categories (except
note accuracy, see above) were obtained using score-
independent and score-based features combined and a
training set including recordings from all three years.
The results indicate the general effectiveness of the
features and are generally encouraging. However, they
are still not in a range that would allow for reliable
automatic assessment.

There are aspects of the student performances that can-
not be represented with the current feature set. For
example, a student may stop playing after a mistake in
her performance and start over again (or not continue at
all). In rare cases, sounds of adjacent student auditions
were interfering with the recording. While an approach
such as feature learning would be more “modern” than
designing features with expert knowledge, it is the be-
lief of the authors that it will be hard to learn such high
level features from the data without expert interaction.
However, with the data set hopefully expanding each
year, feature learning becomes a viable option. For
instance, sparse coding and Restricted Boltzmann Ma-
chines were reported to be effective for feature learning
to predict note intensities of performances [24]. Thick-
stun et al. report neural networks outperforming hand-
crafted spectrogram-based features in predicting notes

in a performance [25]. Given these examples, feature
learning is a direction that we intend to look into in the
future.
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