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ABSTRACT

Automatic drum transcription is a sub-task of automatic
music transcription that converts drum-related audio events
into musical notation. While noticeable progress has been
made in the past by combining pattern recognition methods
with audio signal processing techniques, the major limita-
tion of many state-of-the-art systems still originates from
the difficulty of obtaining a meaningful amount of anno-
tated data to support the data-driven algorithms. In this
work, we address the challenge of insufficiently labeled
data by exploring the possibility of utilizing unlabeled mu-
sic data from online resources. Specifically, a student neural
network is trained using the labels generated from multiple
teacher systems. The performance of the model is evalu-
ated on a publicly available dataset. The results show the
general viability of using unlabeled music data to improve
the performance of drum transcription systems.

1. INTRODUCTION

Data availability, listed by Schedl et al. as one of the
open challenges in the field of Music Information Retrieval
(MIR) [21], is an important problem that concerns a large
variety of data-driven MIR systems. To create intelligent
music (analysis) systems, music data with detailed anno-
tations is crucial as training input for machine learning
algorithms. However, multiple constraints impede the avail-
ability of large datasets, including (i) the complexity and va-
riety of music in terms of genres, instrumentation, tonality,
etc., (ii) the difficult and time-consuming process of manu-
ally adding annotations which —- for most tasks — might
also depend on perception and thus require multiple anno-
tators, and (iii) intellectual property laws, restricting the
compilation and sharing of music datasets. Many laudable
efforts have been made to address (some of) these problems,
leading to the release of new datasets or the extension of
existing datasets. Nevertheless, the majority of the com-
monly used datasets for various MIR tasks is still limited
in different aspects, which can impact research focus. For
example, Benetos et al. pointed out that a large subset of

c© Chih-Wei Wu, Alexander Lerch. Licensed under a Cre-
ative Commons Attribution 4.0 International License (CC BY 4.0). Attri-
bution: Chih-Wei Wu, Alexander Lerch. “Automatic drum transcription
using the student-teacher learning paradigm with unlabeled music data”,
18th International Society for Music Information Retrieval Conference,
Suzhou, China, 2017.

Automatic Music Transcription (AMT) approaches only
performed experiments on piano data for which the audio
aligned ground truth was easily obtained [1]. This empha-
sis on piano may lead to models that are strongly biased
towards piano-like instruments and cannot be generalized
to other melodic instruments.

Automatic Drum Transcription (ADT), a sub-task in
AMT that involves the extraction of drum events from au-
dio signals, is also confined to the scope of the existing
labeled datasets. Wu observed [30] that most of the ADT
related datasets focus on collecting recordings of single
drum hits [18, 24] and simple drum sequences without ac-
companiment [5]. Although these datasets provide the es-
sential ingredients for building basic ADT systems, they
cannot properly represent the real-world scenario of drum
sounds embedded in a continuous stream of polyphonic au-
dio sources. Thus, they might fail in addressing real-world
use cases. The ENST drum dataset [8] partly compensates
these drawbacks by offering more realistic and complex
drum sequences with accompaniments, however, its size
and diversity of music styles are still limited. Previous stud-
ies attempt to alleviate these issues through data augmen-
tation [26, 30], but the inherent limitations of the datasets
continue to impede the advancement of ADT systems.

One potential solution to addressing this challenge in
a scalable way without introducing the additional cost of
manual annotations is to explore the usefulness of the vast
collection of unlabeled music data; this can be formulated
as a Semi-supervised Learning problem as defined in the
field of machine learning [3]. The general goal of this
type of problem is to find the optimal solution given both
labeled and unlabeled examples, and it has been applied
successfully to different applications such as music genre
classification [19], music genre tagging [13], and music
emotion recognition [28].

Inspired by the above-mentioned approaches, this paper
aims to address the issue of data availability in ADT systems
by harnessing the information from the unlabeled music
data. Specifically, this paper focuses on improving ADT
performance on polyphonic mixtures. The contributions of
this paper include: (i) new insights into the viability of using
unlabeled music data in ADT tasks, (ii) a general scheme for
integrating unlabeled data into ADT and other MIR systems,
and (iii) the demonstration of potential improvements of
ADT systems using the proposed method. The remainder
of the paper is structured as follows: Sect. 2 provides an
overview of ADT research and the student-teacher learning



paradigm. In Sect. 3, we introduce our approach; the results
and discussion are presented in Sect. 4. Sect. 5 provides a
summary, conclusion, and directions of future work.

2. RELATED WORK

In the broadest definition of ADT, it can be described as
the process of converting drum related audio events, such
as drum onset times and playing techniques, into musical
representations such as a score or sheet music. To simplify
this task while still capturing the essence, most of the ex-
isting systems mainly focus on detecting the onset times
of Hi-Hat (HH), Snare Drum (SD) and Bass Drum (BD).
In many of the early systems, which are summarized by
FitzGerald and Paulus [6], the focus was on transcribing
signals containing only drum sounds.

Gillet and Richard propose to categorize automatic drum
transcription systems into three categories [9]: (i) segment
and classify [7, 9], which follows the basic pattern recog-
nition approach by segmenting the signals into individual
instances, and subsequently classifying each instance with
pre-trained classifiers, (ii) separate and detect [5, 20, 29],
in which the signal is converted into separated activation
functions that represent the activities of different drums,
followed by a simple peak picking process to identify their
corresponding onset times, and (iii) match and adapt [31],
which identifies the drum events by template matching us-
ing a set of pre-trained drum templates and customized
distance measures; the templates are iteratively adapted
throughout the process. In addition to these three categories,
a language-model-based approach using Hidden Markov
Models (HMM) [17] and a pattern-matching approach us-
ing bar information [23] have also been applied to ADT
tasks in previous work.

Following the recent success in deep learning [10], sev-
eral state-of-the-art ADT systems utilize Deep Neural Net-
works (DNNs). Specifically, Recurrent Neural Networks
(RNNs), a DNN variant modeling the temporal dependency
of the input using recurrently connected nodes, have been
adopted for this task [22, 25, 26]. Although this method is
capable of learning complicated representations of drums
from the audio signals, it is extremely demanding in terms
of the required amount of training data and computing
power. To reach their full potential, DNNs require large
amounts of training data; the sizes of currently available
datasets appear to be insufficient, as exemplified by the
performance degradation in polyphonic mixtures reported
in several ADT systems [22, 26, 29]

To overcome the problem of possibly insufficient input
data for data-hungry approaches such as DNNs, the idea of
utilizing the unlabeled data seems very appealing. Recently,
the concept of the student-teacher learning paradigm has
emerged as an interesting way of incorporating unlabeled
data in the training of DNNs. Originally proposed as a
model compression method [2], the basic idea of student-
teacher learning is to transfer the knowledge of a large
teacher model into a small and concise student model with
minimum performance loss; this process, referred by Hin-
ton et al. as ”knowledge distillation” [11], is achieved by
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Figure 1. The flowchart of the proposed method

training the student model with the soft targets generated
from the teacher model. In other words, instead of learning
from the hard targets (i.e., the ground truth), the student
model indirectly acquires the knowledge by mimicking the
output from the teacher model. As demonstrated by Li et
al. [16], this process can use labeled as well as unlabeled
data. Successful applications of this paradigm can be found
in tasks such as speech recognition [27] and multilingual
models [4], in which superior performances from the stu-
dent model have also been reported.

3. METHOD

3.1 System Overview

The processing steps of the proposed method, as shown in
Figure 1, can be split into two phases, namely the training
and testing phase. In the training phase, the unlabeled mu-
sic data are passed through the teacher models in order to
generate the soft targets. Specifically, these teacher models
are ADT systems that will convert the audio signals into
drum-related activation functions (i.e., soft targets). The
same unlabeled music data and the generated soft targets
will then be used to train a student model, which is a re-
gression model that minimizes the differences between its
output and the soft targets. In the testing phase, the trained
student model predicts the drum activations of the test mu-
sic data. Finally, a simple peak picking algorithm with an
adaptive threshold will be used to identify the drum onset
times from each activation function, producing the final
transcription output. More elaborate descriptions of the
teacher and student models can be found in the following
sections.

3.2 Teacher Model

The teacher model used in this paper is the drum transcrip-
tion system presented by Wu and Lerch [29]. This NMF-
based ADT system is chosen for its simplicity, its lack of
need for substantial amounts of training data, as well as the
adaptability in polyphonic mixtures; it extends the basic
NMF model to Partially-Fixed Non-negative Matrix Fac-
torization (PFNMF) by assuming the co-existence of both
percussive and harmonic components in the audio signals.
More specifically, the template matrix is split into a pre-
defined part containing the drum templates which kept fixed
and not iteratively updated and a randomly initialized part
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for modeling the remaining harmonic components in the
signal. Formally, this can be expressed as

X ≈WDHD +WHHH, (1)

with X being a m× n magnitude spectrogram matrix with
m frequency bins and n blocks, WD and WH representing
the drum and harmonic dictionary matrices with a dimen-
sionality of m × rD and m × rH, and HD and HH their
corresponding activation matrices with dimensionality of
rD × n and rH × n, respectively. rD usually corresponds
to the number of drums to detect (e.g., rD = 3 for the
detection of HH, BD, and SD), and rH is an user-defined
parameter that varies according to the complexity of the
target signal.

The basic flowchart of PFNMF is shown in Figure 2. It
firstly decomposes the magnitude spectrogram of the poly-
phonic mixtures with a fixed pre-trained drum dictionary
WD and a randomly initialized harmonic dictionary WH.
Once the signal is decomposed, the NMF based activation
function HD(r, :) of each individual drum can be extracted,
in which r = {1, 2, 3} is the instrument index that corre-
sponds to HH, BD, and SD, respectively. These activation
functions can be interpreted as the activity level of each in-
strument over time, and a sharp peak indicates the presence
of a single drum hit.

The conversion of the resulting activation functions into
the soft targets takes another step of standard min-max
scaling across the training data for each instrument; this
process scales the soft targets to a numerical range between
0 and 1 and ensures the compatibility between the soft
targets and the student model output (see Sect. 3.3). Finally,
to introduce diversity into the soft targets, two PFNMF
systems are created by initializing the algorithm with two
different sets of drum dictionaries, forming an ensemble-
like scenario that could potentially lead to better student
performance.

3.3 Student Model

The proposed student model is a fully connected, feed-
forward DNN with three hidden layers. A neural network
is a graphical model that comprises multiple layers of in-
terconnected non-linear units (i.e., neurons). The basic
formulation of a neuron can be expressed in Eq. (2)

alk = g

 M∑
j=1

Wja
l−1
j + bl−1

j

 , (2)

in which a is the activation of the neuron, W is the weight
matrix, b is the bias matrix, l is the layer index, j is the
index of input neuron, and k is the index of output neuron;

g() is usually a non-linear function such as a sigmoid, tanh
or relu. When multiple layers of neurons are stacked, the
model creates a non-linear transformation from the input
to the output, which allows the model to approximate any
arbitrary function with great flexibility.

The architecture of the DNN in this paper is as follows:
the input layer contains 1025 neurons that correspond to
the size of the input representation. The first hidden layer
comprises of 1025 neurons of tanh units with Batch Nor-
malization [12]. The second and third hidden layers have
512 and 32 neurons with relu units, respectively. Finally,
the output layer consists of 3 neurons with sigmoid units
that represent the activities of three different drums (i.e.,
HH, SD, and BD). The architecture and type of neurons are
selected based on the results of smaller-scale preliminary
experiments, and the fully connected layers are chosen for
their simplicity and generality. To solve the optimization
problem of learning the weights W in a DNN, a stochastic
gradient descent based optimization method, Adam [14],
is selected as the optimizer. The student neural network is
configured as a regressor that minimizes the mean squared
error between its output and the soft targets. A mini-batch
consisting of 640 instances is used for training, and the
early stopping technique is applied to stop the training pro-
cess when the loss decrease is less than 10−6 for three
consecutive epochs.

3.4 Implementation

The input representation to both the teacher and student
models is the magnitude spectrogram of the Short Time
Fourier Transform (STFT) computed using a block size of
2048 and hop size of 512 samples with a Hann window
applied to each block. Prior to the calculation of STFT,
the audio signals are down-mixed to mono and resampled
to a sampling rate of 44.1 kHz. The resulting magnitude
spectrogram is a m× n matrix, in which m = 1025 and n
equals the number of blocks.

For PFNMF, the authors’ open source Matlab imple-
mentation 1 is used in our experiments. Since both the
unlabeled music data and the test data are polyphonic mix-
tures, the harmonic rank rH for the PFNMF is set to 50 as
suggested [29]. To speed up the process, template adapta-
tion is deactivated. The extraction of the pre-defined (fixed)
drum templates takes place on two publicly available drum
datasets, namely the SMT-DRUM dataset [5] and 200 drum
machines. 2

Preliminary experiments show that these two sets of
templates exhibit capabilities of capturing different types
of drum sounds, thus adding diversity to this learning
paradigm. The construction of the drum dictionary involves
the concatenation of all the spectra and the extraction of the
median spectrum for each individual instrument. It should
be noted that, since the ENST drum dataset is the main test
dataset for evaluation, no single drum hits from ENST are

1 https://github.com/cwu307/NmfDrumToolbox Last accessed:
2017/04/26

2 http://www.hexawe.net/mess/200.Drum.Machines Last accessed:
2017/04/26



Experiments Averaged F-measure
Role Method # Training Data HH BD SD

Teacher Baseline PFNMF (SMT) N/A 0.69 0.80 0.50
Teacher Baseline PFNMF (200D) N/A 0.68 0.85 0.48

Baseline PFNMF (SMT + 200D) N/A 0.69 0.83 0.48
Student Baseline Linear SGD Regressor 200 * 4 = 800 0.43 0.69 0.43
Student Proposed DNN 200 * 4 = 800 0.78 0.86 0.45

Table 1. A comparison of the averaged F-measures between the proposed method and the baseline methods

used for template extraction in order to ensure the generality
of the proposed approach.

The DNN is implemented in Python using Keras 3 with
the Tensorflow 4 backend. The parameters of the optimizer
are set to default.

To get the final transcription results for evaluation, a
standard peak picking method with a signal adaptive median
threshold is used [15]. The median threshold t(n) can be
computed using Eq. (3):

t(n) = λ ∗max(x) +median(x(n), p), (3)

in which x is a vector of novelty function, λ is the offset
coefficient relative to the maximum value, p is the order
(length) of the median filter, and the n is the block index. All
systems are using the peak picking parameters p = 0.1 s and
λ = 0.12 as described in [29]. No grid search is performed.

4. EXPERIMENTS

4.1 Dataset Description

The collection of the unlabeled data is a crucial step for
ensuring a successful learning process. Generally speak-
ing, the unlabeled dataset should have following attributes:
(i) the collection should contain drums whenever possible,
(ii) the collection should be diverse in terms of music gen-
res or playing styles, (iii) the collection should contain no
duplicates, and (iv) the collection should be as consistent
as possible in terms of audio quality. To build a collection
that meets the above-mentioned criteria, we compile a list
from the Billboard Charts. 5 In particular, we start with
an uniform distribution across a set of 4 genres selected
for commonly featuring strong drum beats or rhythmic pat-
terns, namely R&B/HipHop, Pop, Rock, and Latin. For
this study, 200 songs from each genre has been selected. All
the songs are cross-checked for duplicates, and a final list of
800 songs has been compiled and retrieved from Youtube 6

using open source Python library pafy. 7

All songs are converted into mp3 files with a sampling
rate of 44.1 kHz using ffmepg. 8 The source code for con-
structing the unlabeled music dataset is available online on
Github. 9 In order to speed up the process while retaining

3 https://keras.io Last accessed: 2017/04/27
4 https://www.tensorflow.org Last accessed: 2017/04/27
5 http://www.billboard.com/charts Last accessed: 2017/04/25
6 https://www.youtube.com Last accessed: 2017/04/25
7 https://pypi.python.org/pypi/pafy Last accessed: 2017/04/25
8 https://ffmpeg.org/download.html Last accessed: 2017/04/25
9 https://github.com/cwu307/unlabeledDrumDataset

diversity, only a segment of 30 s from each song is used for
training. This segment starts at 30 s into the song in order to
avoid possible inactivity at the beginning. Since the same
unlabeled data is trained twice with two different sets of
soft targets generated from two different teachers, the total
duration of the training audio is 800 mins (approximately
13.5 hours), which is significantly larger than any existing
drum dataset.

The most popular labeled drum dataset, ENST drum [8],
is used as the test set for evaluation. This dataset consists
of recordings from three different drummers performing
on their own drum kits. The recordings from each drum-
mer contain individual hits, short phrases of drum beats,
drum solos, and short excerpts played with accompaniments.
Since this paper focuses on ADT in polyphonic mixtures
of music, only the minus one subset is used for evaluation.
This subset has 64 tracks of polyphonic music with a sam-
pling rate of 44.1 kHz. Each track in this subset has a length
of approximately 50–70 s with a variety of playing styles.
More specifically, the subset contains various drum playing
techniques such as ghost notes, flam, and drag, which is
close to a real-world setting [30]. The accompaniments are
mixed with their corresponding drum tracks using a scaling
factor of 1/3 and 2/3 in order to be consistent with prior
studies [17, 22, 29]. Only the wet mix recordings of the
dataset are used.

4.2 Experiment Setup

The performance of the following systems is evaluated and
compared:

(i) PFNMF (SMT): a PFNMF system initialized with a
drum dictionary matrix extracted from SMT-DRUM
dataset. This baseline system is used as a teacher
model to generate the soft targets

(ii) PFNMF (200D): a PFNMF system initialized with
a drum dictionary matrix extracted from 200 drum
machines dataset. This baseline system is the second
teacher model for generating the soft targets

(iii) PFNMF (SMT + 200D): another baseline system by
simply taking the averaged activation functions of the
above systems as the prediction output

(iv) Linear SGD Regressor: a baseline student model us-
ing a simple linear regression with stochastic gradi-
ent descent optimization. A Python implementation



Experiments Averaged F-measure
Role Method Genres # Training Data HH BD SD

Student DNN Rock 200 * 1 = 200 0.76 0.83 0.44
Student DNN Pop 200 * 1 = 200 0.78 0.85 0.45
Student DNN RnB 200 * 1 = 200 0.74 0.83 0.48
Student DNN Latin 200 * 1 = 200 0.78 0.83 0.44
Student DNN All 50 * 4 = 200 0.77 0.85 0.45

Table 2. A comparison of different student models trained with unlabeled music data of different genres

of this method from the open source library scikit-
learn 10 is used with all parameters set to default val-
ues.

(v) DNN: the proposed student model

4.3 Metrics

The evaluation metrics follow the standard calculation of
the precision (P), recall (R), and F-measure (F). To be con-
sistent with [9, 22, 29], an onset is considered to be a match
with the ground truth if the time deviation between refer-
ence and detected onset time is less or equal to 50 ms. It
should be noted that some authors use more restrictive set-
tings, compare, for instance, the 30 ms and 20 ms tolerance
windows as used in [17] and [26], respectively.

4.4 Results

The experiment results are shown in Table 1. The reported
accuracies are the averaged F-measures across all 64 tracks
from the ENST minus-one subset. Since the proposed
method does not use the ENST drum dataset for training
purposes, a three-fold cross validation scheme as reported
in [17, 22, 25, 26, 29] is not necessary; this ensures the gen-
erality of the proposed method, but prohibits the direct
comparison of the results with other publications.

The evaluation results show that both teacher systems
PFNMF (SMT) and PFNMF (200D) perform similarly ex-
cept for BD. This could be due to the discrepancy of the
pre-defined drum dictionaries. The 3rd simple baseline sys-
tem PFNMF (SMT+200D) averaging the teacher outputs
gives almost identical performance as the teacher systems.
This result shows that a simple combination of the two
teacher systems does not result in any improvement. This
means either that the performance cannot be improved given
the teacher information or that a more sophisticated method
is required for combining the outputs. The student baseline
system is a simple linear regression model trained using the
student-teacher learning paradigm as described in Sect. 3.
This baseline serves as a sanity check for the necessity of
a complex model such as DNN. As expected, the perfor-
mance of the linear regression model is the worst among
all the evaluated systems, indicating the need of deploying
a non-linear model in order to benefit from this training
scheme. Finally, the proposed DNN-based student model
is actually able to outperform both teachers with higher
F-measures for both HH and BD. The results for the SD

10 http://scikit-learn.org Last accessed: 2017/04/25

are somewhat inconclusive; here, one teacher outperforms
all other systems. This could imply the similarity between
the SD sounds in SMT and ENST dataset, but the infe-
rior performance from the student model still needs further
investigation.

Based on these results, another interesting question
arises: does music genre play a role in the preparation
of unlabeled data? To answer this question, a follow-up
experiment has been conducted by training the DNN model
with unlabeled data of each individual genre. The experi-
ment results are shown in Table 2. In this experiment, the
number of training samples is fixed at 200 in order to elimi-
nate the influence of data size. For the All case, 50 songs
from each genre are randomly selected. Interestingly, the
best performance of different instruments, as highlighted
in the table, belongs to different genres. This implies the
advantage of having various genres in the training data, for
they could potentially complement each other and boost the
performance of the student model.

Although the cross-genre model trained on the equally
distributed data does not achieve the highest accuracy in
every individual instrument, it is still better than majority of
the single-genre models and generally well-balanced. Over-
all, providing diverse unlabeled training data in terms of mu-
sic genre seems to be beneficial in this learning paradigm.

From all of the above experiment results, the results for
HH show the most obvious and consistent improvement
over the teacher models. This observation leads to another
question: where do these improvements come from? A
closer look at the experiment results reveals the strength of
the DNN student model. As shown in Table 3, the DNN
student model outperforms the teacher models on both pre-
cision and recall for HH. The DNN student model also
achieves the highest BD precision. Since these improve-
ments in precision are achieved without sacrificing recall,
they suggest a reduction in false positives from the student
model output. One possible explanation is that the songs
presented in the unlabeled music data have a higher agree-
ment on HH sound; this allows the student model to acquire
a more consistent internal representation of HH that leads
to a more accurate estimation during testing.

It is noticeable that the DNN student model seems to
consistently have problems detecting SD. Since the snare
drum tends to have larger spectral overlap with the other
instruments, it is conceivable that DNN student model will
have difficulties learning a robust internal representation
for this instrument. A collection of unlabeled data with
a stronger presence of snare drum might be possibly able



Method
HH BD SD

P R P R P R
PFNMF (SMT) 0.77 0.69 0.74 0.91 0.67 0.49
PFNMF (200D) 0.75 0.68 0.82 0.90 0.60 0.49
DNN 0.87 0.72 0.83 0.89 0.60 0.44

Table 3. A comparison of precision (P) and recall (R) between student and teacher models

to alleviate the problem, however, this issue requires fur-
ther investigation before any conclusion can be drawn. In
general, this deficiency in SD is also consistent with the pre-
vious studies [17, 22, 25, 29], where the detection of Snare
Drum in polyphonic mixtures has been reported as the most
difficult task in ADT. It is also possible that the Snare Drum
is for some reason particularly hard to detect in the ENST
set that is commonly used for evaluation.

5. CONCLUSION

This paper presents a system for Automatic Drum Transcrip-
tion based on the student-teacher learning paradigm with
the unlabeled music data. The proposed method integrates
two NMF-based ADT teacher systems with a DNN-based
student model by transferring knowledge using unlabeled
music data, and the evaluation results indicate the possi-
bility of obtaining a student model that outperforms the
teacher model based on this approach. This result is gen-
erally encouraging and demonstrates the great potential of
using unlabeled music data in ADT tasks. The experiment
results also imply the benefit of having relevant music gen-
res in the unlabeled training data, which could lead to the
construction of an improved unlabeled dataset in the future
studies. The proposed method has the following advantages:
first, the approach allows for complete separation between
training and test data, therefore reducing the likelihood of
over-fitting and supporting the claim of generality of this
approach. Second, the proposed method is able to support
data-driven approaches with the need of large amounts of
training data given the availability of existing teacher mod-
els. Third, the proposed method could not only be easily
applied to other ADT systems but also inform data-hungry
systems from other transcription tasks or MIR problems in
general. Last but not least, this learning scheme has the
potential of summarizing multiple complicated teacher sys-
tems, providing competitive performance with one concise
student model.

The possible future directions of this work are:

(i) Increasing the number and diversity of teacher sys-
tems. Since the proposed training scheme does not tie
to any particular ADT approach, the teacher models
can be easily swapped with other ADT expert sys-
tems. Intuitively, more teacher models should lead to
a more versatile student model. However, the influ-
ence of having a more diverse pool of teacher systems
still requires further investigation.

(ii) Varying architectures and approaches of the student
models. In addition to DNNs, other neural networks

architecture may have great potential of achieving
better student performance as well. For instance, the
RNN based model that incorporates the temporal in-
formation could be a good fit in the context of ADT
tasks.

(iii) Evaluating different input representations. As re-
ported by Cui et al. [4], the student model is able
to outperform the teacher model especially when it
is trained on the same soft targets but with a stronger
input representation. Following this observation, one
possible future direction of this work is to investigate
the effectiveness of other input representations, such
as CQT, Cepstrum, or Wavelet transforms.

(iv) Evaluating alternative approaches for using unla-
beled data. To fully benefit from the unlabeled data, it
is also worth investigating how the proposed method
compares to other approaches such as unsupervised
feature learning [19].

The presented work represents only a preliminary study
of what the authors see as a likely path for the future of
training MIR systems as the issue of an insufficient amount
of annotated data is likely to get worse with increasing
complexity of machine learning systems applied to MIR
tasks. Drawing on the vast potential of using existing state-
of-the-art MIR-systems as teachers and the overwhelming
public availability of unlabeled music data might enable
exciting ways of creating new and more powerful MIR
systems.
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