
CONCERT STITCH: ORGANIZATION AND SYNCHRONIZATION OF
CROWD-SOURCED RECORDINGS

Vinod Subramanian
Center for Music Technology

Georgia Institute of Technology
vsubramanian32@gatech.edu

Alexander Lerch
Center for Music Technology

Georgia Institute of Technology
alexander.lerch@gatech.edu

ABSTRACT

The number of audience recordings of concerts on the in-
ternet has exploded with the advent of smartphones. This
paper proposes a method to organize and align these record-
ings in order to create one or more complete renderings
of the concert. The process comprises two steps: first,
using audio fingerprints to represent the recordings, iden-
tify overlapping segments, and compute an approximate
alignment using a modified Dynamic Time Warping (DTW)
algorithm and second, applying a cross-correlation around
the approximate alignment points in order to improve the
accuracy of the alignment. The proposed method is com-
pared to two baseline systems using approaches previously
proposed for similar tasks. One baseline cross-correlates
the audio fingerprints directly without DTW. The second
baseline replaces the audio fingerprints with pitch chroma
in the DTW algorithm. A new dataset annotating real-world
data obtained from the Live Music Archive is presented and
used for evaluation of the three systems.

1. INTRODUCTION

Crowd-sourcing is the concept of presenting a problem to
a large group of people and utilizing the best combination
of the solutions received [12]. Although a large group of
people can be used to obtain data, the data needs to be
organized and labeled in a logical way to be useful. For
instance, there has been an explosion in the number of
audio and video recordings available online in the last few
years. For large events such as concerts, speeches, and
sports events, there are many recordings of (parts of) the
same event. These recordings, however, are not annotated
in a way that would allow a reconstruction of the complete
timeline of the event. The focus of this research is, therefore,
on the automatic organization and synchronization of the
multiple recordings available of the same event.

Marshall and Shipman [16] analyze the people’s reasons
for recording events and report personal memorabilia, shar-
ing on social platforms, creation of remixes, and online
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republishing as the main reasons. This indicates that there
is value attached to these recordings. Vihavainen et al. [24]
showed in their work that a human-computer collaborative
approach to remixing concerts is of interest to a concert au-
dience. Although the subjects favored the manually edited
concerts in this instance, it still emphasizes the value of
recombining audience recordings

While recombining audience recordings creates a better
audience experience beyond the concert, a tool for auto-
matic concert “stitching”, faces several challenges. For
example, each recording will have different audio quality
due to different recording devices, distance from the stage,
local disturbances etc.

After meeting these challenges, the application of this
research enables (a) improved audience experience through
personalized, collaborative, or theme-driven reconstruction
of the event thus creating a platform for derivative work,
(b) analysis and improvement of stage setups by venues and
performers through audience videos from a large variety of
recording angles, and, more generally, (c) audio forensics
to reconstruct a scene by synchronizing multiple recordings
for surveillance and investigation.

The goal of this study is to present a method that can
(a) reliably identify if multiple recordings from an event
have common audio content and (b) provide a precise align-
ment between all pairs of recordings. In the hope of en-
couraging more research on this task, we also present a new
dataset for training and evaluation.

2. RELATED WORK

The task of aligning multiple recordings of an event can
be divided into two steps: first, using a representation the
recordings to identify overlapping segments, and compute
an approximate alignment and second, applying a cross-
correlation around the approximate alignment points in
order to improve the accuracy of the alignment.

In tasks such as speech recognition [6,11] and music sim-
ilarity [1,8], Mel-Frequency Cepstral Coefficients (MFCCs)
are widely used to measure similarity between audio files.
The Mel-Cepstrum captures timbral information and the
spectral shape of the audio file [3]. However, MFCCs do not
contain musically meaningful information such as melody
or rhythm which could be argued to be crucial for comput-
ing music similarity.

Music Information Retrieval tasks such as cover song
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Figure 1: Proposed method block diagram

detection [19], audio thumbnailing [2], and genre classifi-
cation [23] use pitch-based features such as a pitch chroma
to compute a measure of similarity. The pitch chroma [15]
is an octave-invariant representation of the tonal content of
an audio file and is usually computed in intervals of approx.
10 ms. A useful property of the pitch chroma is its robust-
ness to timbre variations, allowing it to compare the pitch
content of two different versions of the same song without
being strongly influenced by timbre variations.

Determining the similarity of two recordings is closely
related to audio fingerprinting, which aims at identifying a
recording from a large database of recordings. An audio fin-
gerprint is a highly compressed and unique representation
of a (part of a) song [10, 25]. Wang [25] introduced an au-
dio fingerprinting technique based on so-called landmarks.
A landmark is identified as the spatial relationship of the
salient spectral peaks. This representation is also used for
the task of audio alignment of concert recordings [4, 13].
Most audio fingerprinting methods are temporally sensitive,
meaning that they are not designed to handle variations in
playback speed — a scenario that is likely in the case of
analog recordings of concerts. The audio fingerprinting
method introduced by Haitsma and Kalker calculates a 32
bit sub-fingerprint for every block of audio by looking at
the energy differences along the frequency and time axes.
This fingerprint method is used by Shrestha et al. [21] in
their work on alignment of concert recordings. Alternately,
Wilmering et al. [26] use high-level audio features such
as tempo and chords in combination with low-level audio
features such as MFCCs and pitch chroma to detect au-
dio similarity for audio alignment of different versions of
concerts.

Identifying and aligning overlapping segments requires
the computation of a similarity or distance measure across
a sequence of signal descriptors. One way of doing this
is cross-correlation. Most of the research in aligning con-
cert recordings apply this approach [4, 5, 13, 21, 22]. One
constraint of cross-correlation is that the two sequences are
assumed to be at the same speed. It is apparent that cross-
correlation cannot be easily applied to the task of aligning

analog recordings because there may be tempo variations
and temporal fluctuations in the data. Another issue with
cross-correlation is that a threshold needs to be set for what
constitutes an alignment. To set the threshold some publica-
tions use heuristic methods based on their data [4,5, 13,22],
while others [21] use a threshold determined by Haitsma
and Kalker [10]. Using fixed thresholds bears the risk of
errors when applying the system to unseen data.

Another method for computing overlaps is the use of
Dynamic Time Warping (DTW), as it is able to handle tem-
poral fluctuations between the signals [14]. Wilmering et
al. apply DTW twice, the first time for aligning a recording
to a reference audio file in order to identify the different
playback speeds. Based on the result, the audio files are
processed to mirror the playback speed of the reference.
The second alignment is then applied to improve the accu-
racy of the first alignment. DTW is also used in the related
task of sample detection, where it can help to identify the
location of a sample in a song [9].

3. ALGORITHM DESCRIPTION

The first part of the algorithm, as shown in Figure 1a, com-
putes audio fingerprints for each recording and uses these
fingerprints to compute pairwise distance matrices. For
each distance matrix, a DTW algorithm determines mul-
tiple possible path candidates representing the potentially
overlapping region between that pair of recordings. For
each of these candidates, features are extracted and an SVM
classifier determines which path is the most likely. In the
case that the pair is not overlapping, no path should be
selected from the candidates. The second part of the algo-
rithm as shown in Figure 1b takes the most likely path and
computes a cross-correlation of the overlapping regions to
determine the exact alignment of the pairs and to improve
accuracy.

3.1 Audio Fingerprint Computation

The motivation for using audio fingerprints is that it is
a representation of audio robust to noise and timbre [10,



Figure 2: The top row shows the fingerprints from two
recordings of the same 5 second snippet. The second row
shows the fingerprints from two recordings of different 5
second snippets. For the Bit Error, the black regions indicate
the fingerprints match and the white regions indicate the
fingerprints are different.

25]. The audio fingerprinting technique utilized here is the
Haitsma and Kalker algorithm [10]. The audio fingerprints
are computed at a sampling rate of 5 kHz with a block size
2048 and a hop size of 512.

Figure 2 visualizes the robustness of audio fingerprints
to noise distortion with an example. The upper row shows
the bit error (in white) between the fingerprints of two
matching but distorted recordings, the lower row shows the
same for two different recordings. We can clearly see how
the fingerprints retain the essential information even in the
case of heavy distortion.

3.2 Modified Dynamic Time Warping

Dynamic Time Warping (DTW) is designed to align se-
quences with similar content but are temporally different.
In the case of aligning concert recordings, the temporal fluc-
tuations might occur due to inaccuracies in the sampling
rate; in the case of analog recordings, the temporal fluctua-
tions might be caused due to varying playback speeds.

The classical DTW algorithm introduced by Sakoe and
Chiba works under the assumption that the start and end
points of the two sequences are aligned [20]. A modification
of the standard approach allows the algorithm to detect sub-
sequences [18]; however, in the case of real life recordings,
the most likely scenario is that a pair of recordings might
have overlapping regions. Therefore, a pair of recordings
will neither have the same start and end points, nor will
one recording necessarily be a subsequence of the other.
To address this issue, the subsequence DTW algorithm
is modified to look for overlapping regions by doing the
traceback from all possible end points.

The distance matrix is computed as the pairwise dis-
tance of two audio fingerprint matrices corresponding to
two recordings. The dimension of one fingerprint matrix is
32×M and of the second is 32×N where M and N corre-
spond to the number of blocks of audio that each recording
was divided into. Using the Hamming distance, the result is

Figure 3: Distance matrix examples. The dark line indi-
cates high similarity. For Distance matrix 4, there is no
overlap, so there is no high similarity region

Figure 4: Different candidate path examples. The straight-
est line in the image represents the correct path.

a distance matrix D with the dimensions M ×N . Figure 3
shows examples of the distance matrix for different pairs of
recordings; the top left matrix shows a standard DTW case
with start and end points of both sequences aligned, the top
right and bottom left are computed from pairs of record-
ings with overlapping regions and the bottom right matrix
corresponds to a pair of recordings without overlapping
regions.

A cost matrix is computed from the distance matrix as is
done for the subsequence DTW algorithm [18]. In short, the
initialization of the cost matrix computation is modified– as
opposed to accumulating the distance across both the first
row and first column, only the first column is accumulated.

We use the standard DTW technique to traceback the
path; however, instead of doing this on just the minimum
cost point, the traceback is performed on all possible path
end points from the last row and last column. This results
in multiple paths. Figure 4 illustrates a few paths that are
computed for an example cost matrix.

3.3 Feature Extraction

To identify the most likely candidate path, we extract fea-
tures from each path. Each possible path has three features:



(a) the DTW cost normalized by path length, (b) the slope
of the line connecting the starting and ending points, and
(c) the deviation of the path from the line connecting the
start and end points. These paths are then clustered such that
each cluster contains paths that share a start point; the end
point for each cluster is the path with the lowest normalized
cost. From each cluster, the minimum, mean, and standard
deviation of the three path features are taken along with the
number of paths in the cluster. These cluster features are
similar to the ones proposed by Gururani and Lerch in the
context of sample detection [9]. The extracted features per
cluster have a dimensionality of 1× 10 per cluster and are
the input of a classifier estimating whether a path candidate
represents a true overlap or not.

3.4 Classifier

A binary classifier is trained to determine which of the
candidate paths is the most likely path for the alignment.
A Support Vector Machine algorithm (SVM) with a linear
kernel is used as this classifier. In the event that the classifier
doesn’t identify any of the candidate paths as a path for
alignment, it is assumed that that pair of recordings do not
have overlapping content. In the case of two or more paths
being classified as true overlapping paths, the classifier’s
output probability is used to choose the most probable path.

3.5 Sample-Accurate Alignment

The audio fingerprinting technique used [10] downsamples
the audio to 5000 Hz and blocks the audio by 1024 samples
so the DTW alignment has a low resolution. As a more ac-
curate result is desirable to reconstruct the timeline artifact-
free (without ’jumps’) when splicing two recordings to-
gether, a post-processing step is applied. One audio file
is resampled based on the approximate alignment; then,
the cross-correlation of overlapping regions of the pair of
recordings is computed for 5 seconds around the detected
start point. The result should then provide a synchronization
point with improved accuracy.

3.6 Baseline

We compare the results of the proposed method to two
baseline systems– one looking at the audio features and the
other looking at the alignment stage.

3.6.1 Pitch chroma baseline

In order to investigate the effect of audio descriptors on
the alignment accuracy, the pitch chroma is used as the
audio representation instead of audio fingerprints. For the
pitch chroma, a euclidean distance is used instead of the
Hamming distance for calculating the distance matrix. Pitch
chroma is a feature of interest as it is a typical feature used
for audio similarity [2, 19, 23]. It has also been used in
previous work on aligning concert recordings [26]. The
pitch chroma is computed at a sampling rate of 11 kHz with
a block size of 4096 and a hop size of 1024.

3.6.2 Cross-correlation baseline

The cross-correlation on audio fingerprints is the most estab-
lished approach in the field of aligning noisy concert record-
ings [4, 13, 21]. For this process, the Hamming distance is
computed at different levels of overlap and a threshold of
0.35 Bit Error Rate (BER) is set according to the recom-
mendation by Haitsma and Kalker [10]. If the distance falls
below the threshold then the pair of recordings are aligned
at that overlap.

4. EXPERIMENTS

We run several experiments to investigate our algorithm.
We evaluate the audio (feature) representation, approaches
to alignment, and alignment accuracy.

4.1 Dataset

Two datasets are used in this study– a synthetic dataset
and a real world dataset. The synthetic dataset created for
simulating a real world scenario; the advantage is a sample-
accurate ground truth. The synthetic dataset will be used as
the training and validation set, as well as to provide some
preliminary results with high accuracy. The real-world
dataset is manually annotated from existing recordings and
is used to test the overall performance of the algorithm.

4.1.1 Synthetic Dataset

The synthetic dataset is a collection of audio recordings
downloaded from YouTube 1 consisting of live recordings
of concerts. There are a 100 songs available in this dataset.

In order to create training data for the classifier, each
song of the dataset is divided into 17 (can be varied) record-
ings with the constraint that each recording is longer than
20 s and the entire song is covered. Each recording is
modified by (a) resampling randomly between 42.9 kHz
to 45.2 kHz, (b) either low pass filtering with a cutoff be-
tween 5000 Hz to 11600 Hz or high pass filtering with a
cutoff between 200 Hz to 5000 Hz, (c) adding crowd sounds
obtained from freesound.org [7], and (d) adding distortion
using the ’live recording’ and ’smart phone recording’ sim-
ulations in the audio degradation toolbox [17]. The code
for generating the synthetic dataset is available online 2 .

4.1.2 Real World Dataset

The real world dataset consists of 5 audience recordings of a
Grateful Dead concert performed on 1977-05-08. The audio
data was obtained from the Live Music Archive 3 . The first
5 songs from the concert were selected and each of the 5
versions of the 5 songs were annotated. The annotations
indicate the start and end points of the song. In case a
part of the song is missing, the duration and location of the
missing location is indicated. Since these recordings were
made on analog devices, the data is prone to tempo and
playback speed variation in addition to the usual filtering
and distortion heard in audience recordings. The real world

1 https://www.youtube.com/ accessed March 1st 2018
2 https://github.com/VinodS7/ConcertStitch-dataset



precision recall f-measure
Fingerprints 0.9697 0.6732 0.8145
Pitch Chroma 0.6753 0.3191 0.4335

Table 1: Experiment 1: Overlap detection for audio finger-
prints vs. pitch chroma on real world data

dataset is augmented by splitting each version of a song into
10 recordings, resulting in 50 simulated audience recordings
per song. The songs are split in the same way as for the
synthetic dataset.

4.2 Metrics

There are two metrics used for the evaluation of this task.
The first metric is using the precision, recall, and f-measure
to provide an understanding of whether an alignment is cor-
rectly detected for a pair of recordings. The second metric
is the statistical analysis of the alignment accuracy in sec-
onds where the median, standard deviation, and maximum
values are used to measure how accurate the alignment is.

4.3 Experiment 1: Audio fingerprints vs. pitch chroma

The aim of this experiment is to compare the audio repre-
sentation on which the distance computation is based. We
investigate audio fingerprints and pitch chroma for the task
of aligning noisy recordings.

To train the SVM classifier for the algorithm, the above-
mentioned cluster features are extracted from the synthetic
dataset for 25 songs. To extract the features for each pair of
recordings, the DTW algorithm computes multiple possible
paths corresponding to all unique starting points. All paths
are labeled incorrect except the path that is closest to the
ground truth in the case of overlapping recordings. The
extracted feature matrix thus consists of the cluster features
along with a label of whether those features correspond to
an overlap or not. This process is applied to both audio
fingerprints and pitch chromas.

Once the feature matrix is available, it is divided into
an 80-20 split for training and validation, respectively. As
each pair of recordings has multiple candidate paths with
a maximum of only one being correct, there are far more
negative observations in the feature matrix than positive
observations. To counteract the high number of negative
observations, the training data is sampled to reduce the
number of negative observations. The ratio of negative
to positive observations is 50:1 for the audio fingerprints
classifier and 30:1 for the pitch chroma classifier.

The evaluation is performed on the real world dataset.
Only the start points of the alignment are taken into account
because the audio files are not modified or resampled based
on the end points.

4.3.1 Results

Table 1 reports the precision, recall, and f-measure of the
audio fingerprints and the pitch chroma. The fingerprint out-
performs the pitch chroma considerably for all metrics. This

3 https://archive.org/details/GratefulDead accessed January 15th 2018

Real World precision recall f-measure
DTW 0.9697 0.6732 0.8145
cross-correlation 0.4132 0.2534 0.3141

Synthetic precision recall f-measure
DTW 0.9570 0.9319 0.9443
cross-correlation 0.6936 0.8956 0.7818

Table 2: Experiment 2: DTW vs. cross-correlation using
audio fingerprints for real world and synthetic data

result is expected as the fingerprint is specifically designed
to work in conditions with severe quality impairments. The
poor performance of the pitch chroma can be traced back to
computing the candidate paths in the DTW algorithm. Due
to the noise, the candidate paths frequently do not contain
the correct path for the pitch chroma. This adversely affects
the training process for the SVM classifier and subsequently
the performance on the real world data.

4.4 Experiment 2: DTW vs. cross-correlation

The aim of this experiment is to compare the performance of
the DTW and the cross-correlation techniques when audio
fingerprints are used as the audio representation. The audio
fingerprints for the cross-correlation method are almost the
same as for the DTW algorithm, the only difference is that
the hop size is now 64 instead of 512.

The classifier for the DTW algorithm is set up the same
way as in Experiment 1. The evaluation is performed on
both the synthetic dataset with no temporal fluctuations and
the real world dataset.

4.4.1 Results

Table 2 reports the precision, recall, and f-measure of the
DTW method and the cross-correlation method on the two
datasets. We observe that the DTW method clearly outper-
forms the cross-correlation method. This is especially true
for the real-world data because the DTW is designed to han-
dle temporal fluctuations while cross-correlation is not. On
the synthetic dataset containing no temporal fluctuations,
the cross-correlation method performs much better; how-
ever, it still does not perform as well as the DTW method.
One possible reason might be that the cross-correlation
method uses a strict threshold to identify alignment so the
cross-correlation method does not scale well to different
types of noise.

4.5 Experiment 3: DTW performance analysis

The goal of this experiment is to understand the strengths
and weaknesses of the proposed algorithm.

For the first part of the experiment, the precision, recall,
and f-measure are reported for difference tolerance thresh-
olds on the real world dataset. The tolerance threshold gives
maximum allowable deviation of the alignment provided
by the algorithm from the ground truth. If the alignment
exceeds the threshold then it means the algorithm predicted
the alignment incorrectly.
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Figure 5: Experiment 3: Analyzing the performance of the
proposed method

The second part of the experiment tests how robust to
time stretching and pitch shifting the algorithm is. First,
the sample rates for each of the recordings are identified
using the same technique as Wilmering et al. [26]. Then,
the alignment is calculated between each pair of recordings.
Finally, the f-measure of the alignment is compared to the
ratio of sample rates( or version lengths).

4.5.1 Results

The first part of Figure 5 shows the precision, recall, and
f-measure at different tolerance thresholds. The plot shows
that the performance decreases drastically for tolerances be-
low 2 s. These results indicate a need to refine the alignment
in order to provide a more accurate measure of alignment.

For the second part of Figure 5, we expect the algorithm
to perform better if the ratio of lengths is closer to 1 and
the performance to get worse the further away from 1. The
reason is that if the ratio of sample rates is further away
from one the pitch shifting becomes more significant which
this algorithm is not designed to handle. However, the plot
does not reflect this hypothesis because the pitch shifts in
certain audio files is greater than expected. In addition to
resampling there is more pitch shifting which causes the al-
gorithm to fail since both the pitch chroma and fingerprints
are sensitive to pitch shifting.

4.6 Experiment 4: Analysis of improved alignment
accuracy

For a pair of recordings using the alignment, a resam-
pling factor is calculated using a ratio of the length of
the two paths. One recording is resampled so it has the
same length as the other. We investigate and compare the
spectral flux, spectral centroid, and time-domain raw audio
for their ability to improve the alignment accuracy when
cross-correlating a small segment around the previously es-
timated alignment points. For reference, the same features
are computed without resampling the audio. The spectral
flux and spectral centroid are calculated at a block size of
128 with a hop size of 32. The alignment accuracy for the
raw audio, spectral flux, and spectral centroid for the origi-
nal and resampled audio are compared against the original

median std max
DTW alignment 5240 11503 125221
Raw audio 9043 49091 823906
Spectral Flux 7073 12554 108950
Spectral Centroid 7161 9919 54695
Res. Raw Audio 5801 23185 227631
Res. Spec. Flux 5078 13092 125846
Res. Spec. Centroid 5006 11128 100165

Table 3: Raw Audio vs Spectral Flux to improve alignment
accuracy. The results are reported as deviation in samples
at 44.1 kHz

DTW algorithm to evaluate the accuracy improvement. The
evaluation for this task is done on the synthetic dataset be-
cause the annotations are more accurate than for the real
world data.

4.6.1 Results

The results of Experiment 4 are reported in Table 3. The
numbers indicate how close to the ground truth alignment
the algorithm performs in samples at a sample rate of
44100 Hz None of the finer alignment algorithms are able to
significantly improve the alignment of the algorithm. How-
ever, it is important to note that by using the approximate
alignment to resample the audio files, the results are much
better than without resampling. One explanation for the
limited improvement in performance is that the spectral
centroid and spectral flux might not be too susceptible to
noise.

5. CONCLUSION

This paper presented a method for accurately aligning
recordings of a concert event given that these recordings are
noisy snippets. The results show that audio fingerprints are
better suited than pitch chroma for the task of representing
noisy audio and that dynamic time warping performs bet-
ter than cross-correlation for the alignment. Using a finer
alignment on the resampled audio shows promise; however,
the results are still unsatisfactory. The real world data has
been made publicly available, and the used modifications
of the data is published online 4 .

The biggest drawback of the algorithm is its inability to
handle pitch shifts in audio recordings very well– a known
issue with many fingerprinting systems. If the current audio
fingerprinting algorithm is replaced with an algorithm that
is robust to noise as well as to pitch shifts, we expect the
performance of the system would improve considerably on
our real world dataset.

Future work on this task will focus on the actual rendi-
tion of the complete event once the alignment is known and
possibly combine audio with video. Selecting the segments,
determining fade points, durations, and type in the overlap-
ping regions, are all interesting and challenging tasks that
have not been researched in depth yet.

4 https://github.com/VinodS7/ConcertStitch-dataset
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