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The automatic assessment of (student) music performance involves the characterization
of the audio recordings and the modeling of human judgments. To build a computational
model that provides a reliable assessment, the system must take into account various

aspects of a performance including technical correctness and aesthetic standards. While
some progress has been made in recent years, the search for an effective feature repre-
sentation remains open-ended. In this study, we explore the possibility of using learned

features from sparse coding. Specifically, we investigate three sets of features, namely a
baseline set, a set of designed features, and a feature set learned with sparse coding. In
addition, we compare the impact of two different input representations on the effectiveness
of the learned features. The evaluation is performed on a dataset of annotated recordings

of students playing snare exercises. The results imply the general viability of feature

learning in the context of automatic assessment of music performances.

Keywords: Music Performance Assessment; Music Information Retrieval; Feature Learning.

1. Introduction

Music performance is a sequence of actions that integrates both cognitive and motor

skills. Starting from the musical ideas, this process of converting thoughts into

movements is, as pointed out by Palmer [1], among the most skill-intensive actions

produced by human beings. To cultivate these skills, the qualitative assessment by

peers and teachers is an essential pedagogical component in music education. A

systematic assessment that is able to facilitate improvements usually requires careful
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Fig. 1. The concept of automatic music performance assessment systems.

examination of different aspects of a performance, such as technical correctness and

alignment with aesthetic ideals. This task, however, is extremely difficult due to

its subjective nature. As a result, human raters tend to exhibit a large variance in

terms of their severity, rating scale, and the interpretation of rating categories [2];

the bias of the raters and the ill-defined categories, as suggested by Thompson and

Williamon [3], could adversely impact both the discriminability and the fairness

of assessment. A computational approach that provides consistent and repeatable

feedback, as illustrated in Fig. 1, might offer a potential solution to this issue and

enhance the students’ learning experience.

With recent advances in the field of Music Information Retrieval (MIR) for

tasks such as music transcription [4] and source separation [5], the realization of

intelligent music systems with reliable functionality became plausible, opening up new

possibilities for music education [6]. Commercial software such as SmartMusica and

Yousicianb both showcase how automatic assessment tools could enhance the music

learning process with more flexible practice sessions and individualized feedback.

These efforts, while providing rudimentary solutions to the users, still fall short in

characterizing non-technical aspects of a performance. We hypothesize that this

limitation originates from the design of the audio features. In MIR, a set of well-

established features has proven to be surprisingly successful in applications such

as music genre classification [7], music emotion recognition [8], and drum sound

classification [9], however, using the same features for other tasks such as music

performance assessment has been shown lead to sub-optimal performance [10, 11].

In this paper, we explore the possibility of applying unsupervised feature learning

in the context of music performance assessment. In particular, we compare the

effectiveness of a set of baseline features, designed features, and learned features in

assessing students’ snare drum performances from a large set of recordings of the

ahttp://www.smartmusic.com Last access: 2017/10/15
bhttp://yousician.com Last access: 2017/10/15
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Florida all-state auditions. A successful set of features would clearly describe the

acoustic events rendered by the performers, providing a good foundation for studying

the connection between music performance and its corresponding assessment given

by the human judges. Therefore, the goal of this paper is to identify optimal features

for characterizing percussive instrument performances.

The contributions of this paper include:

(1) new insights into the viability of applying feature learning to the problem of

automatic music performance assessment,

(2) a new input representation that characterizes percussive instrument performances

for feature learning purposes, and

(3) the demonstration of potential improvements in predicting judges’ ratings using

the proposed method.

The remainder of this paper is structured as follows: Section 2 presents the

related work in automatic music performance assessment and feature learning. In

Sect. 3, we introduce our proposed method. The experiment setup and results are

described in Sect. 4. Finally, the conclusion and future directions are presented in

Sect. 5.

2. Related Work

Music, as a performing art, requires the rendition of a musical score or idea into

a physical acoustical realization [12]. The score can be understood as a blueprint

for a performance [13] that contains implicit and ambiguous information that can

be difficult to describe and quantify [14, 15, 1, 16]. This ambiguity leads to often

significant differences between performances of the same piece. These differences

can fall into the categories pitch (vibrato, intonation, etc.), rhythm (tempo, micro-

timing, etc.), dynamics (accents, loudness, etc.), and sound quality (playing technique,

articulation, etc.) [17].

Music Performance Analysis (MPA) is a research field that focuses on the study

of the performance parameters in the acoustic rendition rather than the musical score

itself [12]. Instead of analyzing the intentions of the composer from the symbolic

representation of a music composition, MPA focuses on interpreting the artistic

decisions made by the performers during their music performance. For example, by

playing the same score at different tempi or with different dynamics, the performer

makes choices that result in performances which convey different information with

various levels of expressiveness. One of the main challenges of MPA, therefore, is to

associate these expressions with human perception in a musically meaningful way.

To automate the process of MPA, a system must handle the extraction and

interpretation of the important parameters of music performances. In the early

research, most of the analysis was performed on symbolic data extracted from

external sensors or MIDI devices. For example, electronic keyboards have been

utilized to investigate timing [18], or pianos with sensors have been used to study
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dynamic variations [19] or asynchronies between pianists’ hands [20]. More recently,

the focus has gradually shifted to the analysis of audio recordings, often focusing on

intonation (compare, e.g., [21]) or tempo [22].

As early as the 1930s, Seashore proposed to use objective measurements of

performance parameters to support music education [23]. The commercial appli-

cations mentioned in the introduction testify to the success of this idea and its

commercial viability. The basic difficulty here that the purely descriptive approach

to investigating music performance of most of the studies presented above, does

not directly result in an overall assessment of quality, which would be helpful at

least for certain applications in music education. Instead, they limit themselves to

describe parameter variations and discuss differences and commonalities of multiple

performances and often ignore perceptive and cognitive aspects of the reception of a

performance.

Nevertheless, the assessment of music performance also has been a topic to

study. The basic approach to this problem usually involves the careful design of

audio features that are capable of extracting the most relevant information from

performance data in different contexts. For instance, Nakano presented an automatic

system that evaluates the singing skill of the users [24]; by characterizing the

performances through pitch interval accuracy and vibrato features, the system

was able to classify the performance into the two classes good and poor. Similarly,

Knight et al. attempted to classify the tonal quality of trumpet performances

into the categories “good” and “bad” with low-level audio features. Abeßer et al.

propose a system that automatically assesses the quality of vocal and instrumental

performances of 9th and 10th graders [25]. Features representing the pitch, intonation,

and rhythmic correctness are designed to quantify the students’ performances. They

report that the system is able to predict four different performance qualities with

occasional confusions between the adjacent classes. In a system that identifies

common mistakes by the flute beginners, Han and Lee propose to use features

such as MFCCs with sparse filtering for detecting events such as poor blowing

and misfingering [26]. Bozkurt et al. used features extracted from the fundamental

frequency contour to classify vocal performances into the categories “pass” and “fail”

[27]. More recently, both Wu et al. and Vidwans et al. assess students’ instrumental

performances using a set of features derived from pitch, amplitude, and inter-onset

interval histograms[10, 11]. The evaluation results show some correlation between

the model predictions and expert judges’ ratings.

All of the above mentioned systems use custom-designed features in the analysis

pipeline. This approach, while translating existing music domain knowledge into

machine operations, might also strip away important information that resides in the

data as it focuses on specific aspects that the designers consider to be important.

Feature learning, on the other hand, allows an algorithm to find the most suitable

features based on given input representations. Several feature learning methods have

been found successful in music related applications, especially for the task of music
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genre recognition. For example, Lee et al. applied convolutional Deep Belief Networks

(DBNs) to magnitude spectrograms to learn features [28]; the evaluation results

show that the learned features outperform conventional audio features in recognizing

music genre. Similarly, Hamel and Eck demonstrate that a DBN is able to derive

features that achieve state-of-the-art performance in music genre recognition [29].

Henaff et al. apply Sparse Coding (SC) to the log spectrogram and use the learned

features to train a SVM classifier. The evaluation results provide further evidence

for the effectiveness of the learned features for recognizing music genres [30]. Nam

et al. introduce a pre-processing pipeline that improves the SC feature learning [31];

the evaluation results on a music tagging dataset compare favorably against the

traditionally used audio features. More recently, SC-derived features have also been

shown effective for music genre recognition [32] and music emotion recognition [33].

Based on the findings in the previous work, both DBNs and SC seem to be

useful approaches for feature learning in music related tasks. Compared with DBNs,

however, SC seems to have a broader range of applications in addition to the MGR

task. Therefore, in this study, we propose to explore the viability of applying sparse

coding for music performance assessment.

3. Method

3.1. System Overview

The proposed system comprises both a training and a testing phase. As shown

in Fig. 2, the training phase starts by transforming each audio recording into the

input representation; the input representations are collected for the training data

and passed to the feature learning block. In the feature learning step, the feature

extractor is derived by solving an optimization problem across the entire dataset,

and the corresponding feature vector for each recording is calculated. Finally, the

features are used to train a regression model that minimizes the loss between the

model prediction and the ground truth (judges’ ratings) for each recording, along

with an outlier removal step to refine the model.

In the testing phase, a similar procedure is followed for each recording to prepare

the input representation and extract features using the derived feature extractor.

The resulting feature vector is then used to predict the judges’ ratings with the pre-

trained regression model. In the following sections, more details of each processing

step are presented.

3.2. Input Preparation

The goal of the input preparation step is to normalize, reduce the amount of data,

and to convert the data into meaningful input representations. First, audio recordings

are down-mixed to one channel and resampled to a sampling rate of 22.05 kHz after

decoding. All files are normalized to a numerical range between -1 and 1. Finally, two

different matrix representations are computed, the Short-Time Fourier Transform

(STFT) and a Local Histogram Matrix (LHM).
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Fig. 2. The flowchart of the proposed method.

3.2.1. STFT

The STFT is computed using a block size of 512 audio samples, windowed with

a Hann window. Neighboring blocks are overlapping by 75% (384 samples). Only

the magnitude spectrogram is used and the phase information is discarded. The

resulting spectrogram Mstft is a m× n matrix, in which m = 257 for the number of

frequency bins and n equals the number of blocks. This input representation has

been referred to by some authors as baseline representation [34, 35].

3.2.2. LHM

The histogram input representation aims to capture the most important overall char-

acteristics of the percussive instrument performances. The extraction process of the

Local Histogram Matrix (LHM) is shown in Fig. 3. In order to extract the histogram,

the input time-domain audio signal is first partitioned into non-overlapping local

segments of length 10 s. This length enables us to capture information of the higher

level structure such as music phrases. Within each segment, the Inter-Onset-Interval

(IOI) histogram vector vioi, the amplitude histogram vector vamp, and the averaged

Mel Frequency Cepstral Coefficients (MFCC) vector vmfcc is extracted. Concatenat-

ing these vectors will result in local histogram matrix Mlhm that represents each

individual recording. The vectors are computed as follows:

(1) IOI histogram vector (vioi): First, the onset times, i.e., the start times of

individual drum events are estimated within the local segment. This is done

following a standard approach to onset detection [17]: a novelty function ex-

traction based on spectral differences (spectral flux) between neighboring STFT

blocks is followed by an adaptive median threshold in order to detect and pick

peaks in the novelty function; the time of these peaks are the onset times. The

result, therefore, is a vector onset(i) of onset times in which i is the onset index.
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Fig. 3. Illustration of the construction process of local histogram matrix; vioi is the IOI histogram
vector, vamp is the amplitude histogram vector, vmfcc is the averaged MFCCs vector, and Mlhm

is the local histogram matrix.
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Fig. 4. An example of (a) an IOI histogram vector vioi and (b) an amplitude histogram vector

vamp. All histograms are normalized by the total number of counts and can be interpreted as
probability distributions.

Second, the IOI sequence is computed as the difference between neighboring

onset times (Matlab code: IOI = diff(onset(i))), followed by a non-linear
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transformation IOIln = log(IOI). The reason for the non-linear transformation

is that the ratios of onset intervals are frequently powers of 2 (for example, an

8th note is twice as long as a 16th note), so that the transformation helps to

characterize the rhythmic patterns on a musically more meaningful numerical

scale. Finally, the output vioi is computed by estimating the histogram from the

IOIln with a pre-defined range and resolution, determined heuristically through

data observation in pilot experiments. The histogram vioi is normalized to a sum

of 1 by dividing it by the total number of onsets in the entire recording. The

resulting vioi is a column vector with dimensionality dioi = 31. An example of

vioi is shown in Fig. 4(a).

(2) Amplitude histogram vector (vamp): Following a procedure similar to the

one described above, vamp is calculated by estimating the histogram of the

amplitude values within the local segment. The range of the histogram is from

-1 to 1 with a resolution of 0.05 between the consecutive bins. The vamp is

normalized by the total number of samples in the entire recording. The resulting

vector is a column vector of dimensionality damp = 41. An example of vamp is

shown in Fig. 4(b).

(3) Averaged MFCC vector (vmfcc): Given a local segment, the first 13 Mel

Frequency Cepstral Coefficients (MFCCs) [36], a compact and widely used

description of the shape of the spectral envelope of the signal are computed. The

used STFT parametrization equals the one defined in Sect. 3.2.1. This leads to

a 13× nb MFCC matrix where nb is the number of blocks within the segment.

This matrix vmfcc is aggregated across the nb blocks, resulting in an output

column vector of dimensionality dmfcc = 13.

The same procedure will repeat for each 10-second local segment, resulting in

the final matrix Mlhm is a m′ × ns matrix, in which

m′ = dioi + damp + dmfcc = 85 (1)

and ns is the number of local segments.

3.3. Feature Learning

3.3.1. Sparse Coding

The feature learning algorithm used in this paper is Sparse Coding (SC), which can

be expressed as

α̂ = argmin
α

1

2
‖X −Dα‖22 + λ‖α‖1, (2)

with X ∈ Rm×n as the input matrix, i.e., Mstft or Mlhm. D is the m× k dictionary

matrix, α is the k× n sparse matrix, λ is the sparsity coefficient, n is the number of

local segments, and k is the user-defined dictionary size.

This `1 regularized Least Absolute Shrinkage and Selection Operator (LASSO)

problem can be solved by the Least Angle Regression (LARS) algorithm efficiently[37],
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in which the dictionary D and the sparse matrix α can be learned by iteratively

minimizing the reconstruction loss. Finally, the resulting dictionary D can be

considered as the feature extractor, where the corresponding sparse representation

α can be used to compute the features.

To compute the final feature vector that represents each audio recording, our

system first learns an universal dictionary Dall from the entire dataset. This can be

done by concatenating the Mstft or Mlhm across all the training files, and solve the

LASSO optimization problem on the concatenated matrix Xall. Next, the αindividual

is estimated from each recording by substituting the X in Eq. 2 with the input

representation of an individual file Xindividual while keeping the D = Dall fixed

throughout the optimization process. The resulting αindividual is a k × n sparse

matrix. Finally, αindividual is aggregated using mean and standard deviation across

n segments, producing a feature vector αfinal = [mean(αindividual); std(αindividual)]

with a dimensionality of dfinal = 2× k. [; ] is a vector concatenation operator.

In our experiment, the Matlab implementation for SC from the open source

library SPAMSc [38] is used. The parametrizations k = {32, 64, 128} are tested, and

a sparsity coefficient λ = 1/
√
block size is applied.

3.3.2. Convolutional Autoencoder

In order to investigate other feature learning approaches as well, we included another

baseline system for feature learning: the Convolutional Auto-encoder (CAE). The

inclusion of this system allows us to compare the Sparse Coding-based system with

a neural feature learning system, providing more insights on feature learning in

the context of music performance assessment. The architecture of the CAE in this

paper is shown in Fig. 5. The CAE feature learning process starts by taking a

Mel-spectrogram X of the recording as the input. The network is trained to output

X ′, which is the reconstruction of the input. There are four convolutional layers

with {32, 16, 8, 4} channels of 3× 3 kernels in the encoder. A batch normalization

layer and a max-pooling layer of (2, 1) are added to each convolutional layer. These

specific max-pooling parameters are chosen in order to maintain the temporal

resolution and extract block-wise features from the input. The bottleneck layer is

also a convolutional layer with 4 channels of 3 × 3 kernels. All of the non-linear

units in this CAE are Rectified Linear Units (ReLUs). The decoder has a structure

symmetric to the encoder with the max-pooling layers replaced by the up-sampling

layers. The selected loss function for the training process is the Mean Squared

Error (MSE) between X and X ′; this optimization process is achieved using a

gradient-descent-based algorithm, and the number of training epochs is 30.

To extract the features from the CAE, a process inspired by Choi et al. [39] is

used. As shown in Fig. 5, this process first computes the intermediate outputs from

all the layers in the encoder (including the bottleneck layer). Next, these outputs are

chttp://spams-devel.gforge.inria.fr Last accessed: 2017/10/15
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Fig. 5. The architecture of the CAE and the feature extraction process. Note that the mean

and standard deviation (STD) vectors are computed across the blocks; these two vectors are
concatenated to summarize the entire recording. X is a 64 ×N Mel-spectrogram in dB scale. 64 is
the number of Mel frequency bins.

aggregated across the Mel-frequency axis through averaging. Finally, the aggregated

outputs are stacked into a 64×N feature matrix, where N is the number of blocks.

To derive the final feature vector for each recording, these frame-wise features are

further aggregated by computing the mean and standard deviation across the blocks.

This is similar to the process described in Sect. 3.3.1. Finally, the concatenation of

mean and standard deviation vector is used to represent the entire recording of the

student’s music performance. The dimensionality of this final vector is dcae = 128.

3.4. Regression Model

The regression model used is Support Vector Regression (SVR) with a linear kernel.

The Matlab implementation of this algorithm from the open source library libsvm

[40], is used with default settings. Due to the limited size of sample pool (see Sect. 4.1

for more details), a Leave One Out (LOO) cross-validation scheme is applied to

our evaluation process. The main idea of LOO is to sequentially select one sample

from the pool as test data and use the rest of the pool as training data until all the

samples have been tested. Additionally, an outlier removal process is implemented by

iteratively removing the sample with the largest residual between the prediction and
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the actual label until 5% of the entire data is eliminated. This process potentially

helps the regressor to better capture the underlying patterns of the data.

4. Experiments

4.1. Dataset

The dataset used for this study is provided by the Florida Bandmasters Association

(FBA). This dataset contains audio recordings from the Florida all-state auditions of

three groups of students: middle school (7th and 8th graders), concert band (9th and

10th graders), and symphonic band (11th and 12th graders) for three consecutive

years (2013 to 2015). A total number of 19 types of instruments are included in the

auditions. As a result, this dataset can be split into different subsets of recordings

by their year, group, and instrument (for instance, 2013, middle school, clarinet).

Each subset contains up to 180 recordings of student performances.

In each recording, a student is required to perform several exercises, such as

technical etude, lyrical etude, chromatic scale, 12 major scales, and sight-reading.

Each exercise is graded by expert judges using assessment categories such as mu-

sicality, note accuracy, rhythmic accuracy, tone quality, artistry, and articulation.

The number of judges and the grading criteria are not available. The maximum

score of these categories vary from 5 to 40. In our experiments, all of the ratings are

normalized to a range between 0 and 1 by dividing the score with the maximum

allowed value of the corresponding category. More information on the dataset can

be found in our Github repository.d

In this study, the focus is on assessing percussion performance. For percussion

instruments, the audition session includes 5 different exercises, which are mallet

etude, snare etude, chromatic scale (xylophone), 12 major scales (xylophone), and

sight-reading (snare). To further narrow down the scope of this study, we use only the

subset of middle school snare etude from all three years. This particular combination

is selected for containing a comparably high number of students. As shown in Table

1, a total number of 274 recordings of snare etude with an averaged duration of

51.3 s is available for analysis. For this particular exercise, the assessment categories

are musicality (L1) and rhythmic accuracy (L2).

4.2. Experiment Setup

This paper presents two experiments that highlight different characteristics of the

proposed feature learning method in the context of assessing student snare drum

performances. The goal of Experiment 1 is to compare the effectiveness of two

different input representations (see Sect. 3.2) for SC. For Experiment 2, the goal is to

find the best combination of feature sets in order to achieve the highest performance.

In Experiment 1, the tested configurations are:

dhttps://github.com/GTCMT/FBA2013, Last access: 2017/10/15
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Table 1. Statistics of the middle school snare etude from 2013 to 2015

Middle school/ Percussion/ Snare Etude

Year #Students
Total Dur

(sec)

Average Dur

(sec)

2013 98 4953 50

2014 90 4595 51

2015 86 4608 53

(1) SC (STFT): sparse coding features using STFT as input representations and

(2) SC (LHM): sparse coding features using LHM as input representations.

Both configurations are tested using k = {32, 64, 128}.

In Experiment 2, the regression model trained on the SC learned features using

the proposed LHM with k = 32 is compared to two different sets of features, referred

to as Baseline and Designed features, as proposed by Wu et al. [10]. The regression

performance of the following feature set combinations is tested:

(1) Baseline: the standard spectral and temporal features such as spectral cen-

troid, spectral rolloff, spectral flux, zero-crossing rate, and 13 MFCCs. The

dimensionality is dbaseline = 68.

(2) Designed: the designed rhythmic and dynamic features derived from the IOI and

amplitude histograms. These features involve the calculation of various statistics,

such as crest, skewness, flatness, kurtosis, etc., directly from the histograms

of the entire recording (compare [10] for more details). The dimensionality is

ddesigned = 18.

(3) CAE: see Sect. 3.3.2

(4) SC (LHM): see Sect. 3.3.1.

(5) Designed + Baseline: a combined feature set consisting of both baseline and

designed features.

(6) SC + Baseline: a combined feature set consisting of both SC and baseline

features.

(7) CAE + Baseline: a combined feature set consisting of both CAE and baseline

features.

(8) SC + Designed: a combined feature set consisting of both SC and designed

features.

(9) CAE + Designed: a combined feature set consisting of both CAE and designed

features.

4.3. Metrics

The performance of the models is investigated using the following standard statistical

metrics: the Pearson correlation coefficient r and the coefficient of determination, i.e.,
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Table 2. Evaluation results for Experiment 1: L1 represents musicality, and L2 represents rhythmic
accuracy. The higher is better.

Input Representation STFT LHM

Dictionary

Size
Metrics L1 L2 L1 L2

k = 32
r 0.34 0.19 0.65 0.57

R2 0.08 -0.02 0.41 0.29

k = 64
r 0.41 0.26 0.70 0.50

R2 0.11 -0.00 0.45 0.06

k = 128
r 0.41 0.28 0.33 0.34

R2 0.08 -0.07 -0.08 -0.78

R2. These metrics are commonly used to evaluate the strength of the relationship

between the regression predictions and ground truth. Details of the mathematical

formulations can be found in [41].

4.4. Experiment Results

In this section, the evaluation results of both experiments are presented and discussed.

Since all of the correlation results are significant (p� 0.05), their p-values are not

reported.

The evaluation results of Experiment 1 are shown in Table 2. The following

trends can be observed: first, the LHM input representation outperforms the STFT

representation in almost every case. This result clearly shows that for this task, LHM

is a more effective input representation than STFT. A likely explanation is that this

discrepancy originates from the representations’ capabilities of capturing temporal

information. Since the STFT only represents the spectral content at various single

instances, it does not encapsulate any temporal dependencies between meaningful

audio events such as consecutive drums hits. This temporal information, while being

likely to reside in the sparse matrix α, will be lost after the feature aggregation.

The absence of temporal information apparently poses a problem for SC to learn

higher level music concepts such as rhythm. LHM, on the other hand, captures some

temporal dependencies between the audio events with the IOI histograms. This allows

for the rhythmic information to be translated into the SC dictionary and to reflect

on the final features, leading towards a better performance. Second, both STFT and

LHM perform poorly for the largest dictionary size with k = 128. The reason behind

this degradation for both representations might be due to the limited size of the

sample pool. When k = 128, the resulting feature dimensionality, as described in

Sect. 3.3, would be k × 2 = 256. This will result in a feature matrix of 274× 256

(students×features), and the model could suffer from the curse of dimensionality [42].

One potential solution to this problem would be to apply dimensionality reduction

methods such as Principal Component Analysis (PCA) or feature selection, however,
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Fig. 6. Evaluation results of Experiment 2 for correlation coefficient r (top) L1 (bottom) L2

this is out of the scope of this study. Third, when k = 32, the LHM has the largest

improvement over STFT in both L1 and L2. This result might indicate a relationship

between the best performing k and the number of samples in the dataset.

The evaluation results of Experiment 2 are shown in Fig. 6 and Fig. 7. The first

observation we can make is that both the designed and the SC features outperform

the baseline features. This is in line with our expectations, as the baseline features

are low-level instantaneous features that are not optimized to the task. Second,

the proposed SC features achieve comparable performance to the designed features.

The fact that SC features perform similarly to the designed features is encouraging,

suggesting the possibility of deriving viable features through feature learning with

minimum effort in feature crafting. Third, when combined with baseline features,

both designed and SC features exhibit almost no improvements. There exist two

possible explanations for this. On the one hand, it could be that these features do

not add any information that is not already in the other features. On the other

hand, this issue could be similar to the situation in Experiment 1 when having a

large k, as adding baseline features might induce the curse of dimensionality by

introducing too many features to the current size of sample pool. Four, among all

the tests in Experiment 2, the highest performance is achieved with the combination



April 5, 2018 12:16 WSPC/INSTRUCTION FILE ws-ijsc

Assessment of Percussive Music Performances with Feature Learning 15

L1 (Musicality)

 0.31

 0.46  0.41

 0.18

 0.44  0.45

0.288

  0.6
0.498

Bas
eli

ne

Des
ign

ed

SC(L
HM

)
CAE

Des
ign

ed
 +

 B
as

eli
ne

SC +
 B

as
eli

ne

CAE +
 B

as
eli

ne

SC +
 D

es
ign

ed

CAE +
 D

es
ign

ed

0.2

0.4

0.6

0.8

R
2

L2 (Rhythmic Accuracy)

 0.25
 0.34  0.29

0.141
 0.25

 0.19 0.215

 0.49

0.354

Bas
eli

ne

Des
ign

ed

SC(L
HM

)
CAE

Des
ign

ed
 +

 B
as

eli
ne

SC +
 B

as
eli

ne

CAE +
 B

as
eli

ne

SC +
 D

es
ign

ed

CAE +
 D

es
ign

ed

0.2

0.4

0.6

0.8

R
2

Fig. 7. Evaluation results of Experiment 2 for R2 (top) L1 (bottom) L2

of designed and SC features. The result implies the effectiveness of SC features in

capturing information that is non-redundant to the information provided by the

designed features. Five, the CAE generally shows disappointing results. It seems to

not be able to learn essential information and apparently encapsulates only limited

domain knowledge, resulting in a performance lower than the Baseline. This could be

an issue with either the input representation (compare Experiment 1) or maybe the

choice of the loss function not focusing the network on the “features” of interest. It

is worth noting that the CAE is able to learn something: although the CAE results

are always lower than the Baseline results, the combination of CAE and Designed

always tends to outperform the combination of Baseline and Designed, hinting at

the network learning something that is not properly represented by the designed

features. This is the case even when the combination CAE and Baseline is never

able to clearly improve the results compared to the baseline only.

This demonstrates the potential of using feature learning methods to complement

designed features due to the learned features’ ability to capture relevant information

not or incompletely modeled by features designed with expert knowledge. It is

clear, however, that more work is needed to optimize the training process of feature

learning systems. Modifications in input format and training procedure can help
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ensuring that the algorithm learns the essential features.

A general observation that can be made from all experiment results is the superior

model performance for L1 over L2. As discussed in [10], musicality is an abstract

but holistic measure of the performance, and it is therefore more likely to reflect the

overall perception of the judges and is more consistent across the years.

5. Conclusion

This article presents unsupervised feature learning to derive features for assessing

percussive instrument performances. Specifically, we propose to use a histogram-

based input representation to SC in order to allow the sparse coding to take

advantage of temporal rhythmic information. We could show that — for the task

of performance assessment — this input representation outperforms an STFT-

based input representation that is frequently used for feature learning approaches.

The learned features perform comparable to expert-designed features for this task,

and are able to capture task-relevant information that is not represented in the

designed features, indicating the suitability of combining “traditional” feature design

methods with feature learning approaches for optimal performance. The work also

showcases the dependency of feature learning performance on input representation.

The autoencoder results highlight the differences between feature learning algorithm

and the necessity for optimized input representations.

In summary, the contributions of this work are: First, it provides insights into the

selection of input representations for feature learning in the context of snare drum

performance assessment, favoring representations inspired by domain knowledge

over standard representations such as STFT. Second, the proposed learned features

achieve comparable results with the designed features, demonstrating the viability

of deriving competitive features with minimum effort in feature design. Finally,

combining the designed features with the SC features, the highest performance can

be achieved. This result suggests that learned features might be able to provide

complementary information to the features designed with domain knowledge, further

optimizing the performance of a given task.

Possible future directions of this work include:

(1) Evaluate and compare the efficiency of other feature learning algorithms. Methods

such as DBN[29] and denoising autoencoders [43] may provide new insights into

the finding of the best feature learning strategy for automatic performance

assessment.

(2) Investigate the reasons for the poor autoencoder performance. A different input

format, even disregarding the suggestions of previous research, might enable the

autoencoder to learn more task-relevant information. Similarly, an adapted or

re-designed loss function could help to force the autoencoder to learn relevant

data.

(3) Adapt the proposed method to other types of instruments such as Brass or

Woodwind instruments. The evaluation results on melodic instruments could
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lead to the refinement of the proposed feature learning scheme.

(4) Try to allocate more data. To further investigate the robustness and generality of

this approach, more data is needed. Additionally, the increase in sample pool can

also help the investigation into issues such as the relationship between dictionary

size k and the number of samples. This might lead to a better strategy for

selecting the best performing dictionary size.

(5) Study the relation of performance data and judges’ assessments. Can we quan-

tify which properties most influence the grade? What are the qualities of a

performance that are most crucial with respect to the assessment? Answers to

questions such as these can give us new insights into music performance, its

properties, and its assessment.

Music Performance Analysis and assessment is a multifaceted topic, and the

traditional custom-designed features might not capture all information that is needed

for a detailed analysis. Complementing the set of features with learned features is a

promising direction that we intend to explore further.
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