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Abstract—Voice disorder is a health issue that is frequently
encountered, however, many patients either cannot afford to
visit a professional doctor or neglect to take good care of their
voice. In order to give a patient a preliminary diagnosis without
using professional medical devices, previous research has shown
that the detection of voice disorders can be carried out by
utilizing machine learning and acoustic features extracted from
voice recordings. Considering the increasing popularity of deep
learning and feature learning, this study explores the possibilities
of using these methods to assign voice recordings into one of the
two classes—Normal and Pathological. While the results show the
general viability of deep learning and feature learning for the
automatic recognition of voice disorder, they also demonstrate
the shortcomings of the existing datasets for this task such as
insufficient dataset size and lack of generality.

I. INTRODUCTION

Examples of voice disorders include vocal fold nodules,
polyps, and cysts could be caused by overusing or misusing
your voice. Among people who use their voice professionally,
voice disorders are a frequently observed problem [1]. There
exists evidence from a 1990s survey that 69 percent of singers
and 41 percent of non-singers report a vocal disability over
a time period of 12 months [1]. Another survey shows that
singers and teachers might be forced to end their career earlier
if they do not take care of their voice in time, and 39 percent
of the polled population of this study is not willing to seek
medical attention for their voice [2].

The diagnosis of voice disorders requires professional skills
and medical equipment providing a close-up view of the vocal
folds. The motivation of this study stems from the desire to
provide people about a preliminary voice diagnosis and inform
them with potential issues regarding their vocal health. As
opposed to many professional diagnosis devices, this study
focuses on voice disorder diagnosis using audio recordings.
The goal is to assess the patients’ vocal health condition
from voice recordings by assigning them into one of the two
classes—Normal and Pathological. In order to do so, this study
explores both feature learning and deep learning methods in
the context of voice disorder detection. A detailed analysis of
intra dataset evaluation vs. inter dataset evaluation enables us
to point out current data challenges in this field.

The main contributions of this paper are:
(1) the evaluation of feature learning and deep learning to

voice disorder detection,
(2) the usefulness of data augmentation when applying

feature learning and deep learning to voice disorder detection,
and

(3) a systematic study of shortcomings of commonly used
datasets on the task of voice disorder detection.

The remainder of this paper is structured as follows: Section
II presents the related work in voice disorder detection and the
significance of cross-dataset evaluation on machine learning
tasks. In Sec. III, the proposed method is described. The
experiment setup and results are discussed in Sect. IV and
Sect. V. The conclusion and future research directions can be
found in the final Sect. VI.

II. RELATED WORK

Computational systems to discriminate between normal
and pathological voices have been proposed as early as the
1980s [3]. Many approaches proposed in the literature using
supervised learning algorithms and custom-designed acoustic
features [4]–[6]. For example, Wallen and Hansen propose
to use features such as pitch perturbation and amplitude
perturbation and a neural network classifier [6]. Alonso et.
al also propose to use neural network classifiers but with
a different group of features such as bispectrum and chaos
[4], [5]. Among all of these approaches, many of them use
support vector machine (SVM) as a classifier [7]–[11]. On
the other hand, Mel-Frequency Cepstral Coefficients (MFCCs)
are commonly chosen as features to train different types of
classifiers [11]–[15].

In the past few years, deep learning has received consid-
erable attention due to its superior performances on various
machine learning tasks including voice disorder detection.
Fang et al. propose a system that passing MFCCs into a
multilayer Deep Neural Network (DNN) with a sigmoid acti-
vation function and a softmax layer as the output layer [16].
Nevertheless, one existing challenge of using deep learning
is the models’ requirements on the amount of training data.
For this problem, Muhammad et al. propose a system that
uses transfer learning and adopts CaffeNet [17]. CaffeNet is
a Convolutional Neural Network (CNN) which is powerful
on image classifications [18], and input representations such
as mel-spectrogram and octave-spectrogram can be treated as
image representations of an audio signal [17]. In order to
perform voice disorder detection using CaffeNet, the softmax
layer in CaffeNet is replaced by a new softmax layer that has
two neurons.



Feature learning differs from the supervised approaches
mentioned above in that it attempts to automatically learn
the most representative features from data as opposed to
using features carefully designed by experts. It has been
been successfully applied to speech-related tasks such as
speech recognition [19] and speech emotion recognition [20].
However, feature learning has not been explored in the context
of voice disorder detection.

It is worth pointing out that the vast majority of publications
on this topic utilizes only one dataset, the Massachusetts
Eye and Ear Infirmary (MEEI) dataset [21]. Considering the
distribution of the features such as gender and age, some
works only use a subset of the MEEI database to evaluate
their systems. For example, Parsa and Jamieson employed a
subset that contains 53 normal files and 173 pathological files
[22], and this subset is repeatedly used in later research [8],
[10], [16], [23]. Godino et al. use another subset consisting of
53 normal files and 82 pathological files with the pathological
files are randomly selected from the whole database [14].

Very high classification scores on the MEEI dataset are
reported in the literature. The system proposed by Fang et al.,
for example, achieves a 99.32% classification rate on a specific
subset [16], while Al-nasheri et al. present their system with a
99.81% classification rate on the same subset [8]. Furthermore,
Godino et al. report a best accuracy of around 95% when
experimenting on their subset [14]. There is one publication
by Dibazar et al. that reports results for the complete MEEI
dataset as high as 98.3%; in this case, however, the publication
does not provide sufficient details on system or methodology
[12]. However, as pointed out by Torralba and Efros that every
dataset has its own bias [24], so that assumption might be true
for the MEEI dataset as well.

III. SYSTEMS

The flowchart that describes the proposed systems is shown
in Fig. 1. Pre-processing is performed to extract equal-length
snippets from the dataset recordings. Data augmentation is
applied to four specific experiments that are discussed in Sect.
IV. Then all voice recordings are framed and transformed into
three different input representations. After the input repre-
sentations are obtained, four different machine learning ap-
proaches are investigated: (1) support vector machine (SVM),
(2) CNN, (3) CNN followed by SVM, and (4) autoencoder
(AE) followed by SVM.

A. Pre-processing and Data Augmentation

Silence at the start and end of the audio recordings is
removed, and all files are down-sampled to 16 kHz after-
wards. Next, each file is segmented into multiple 500ms long
snippets, with a 400ms overlap of subsequent snippets. It is
worth mentioning that one recording from the MEEI dataset
is shorter than 0.5 s; therefore, it is discarded and leaves the
MEEI dataset with 655 pathological audio files before framing.

To investigate the impact of the amount of training data
on the results, dataset augmentation is implemented for both
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Fig. 1. Flowchart of the system overview.

datasets before framing them into snippets. In the augmenta-
tion step, each pre-processed file is pitch-shifted by 8 half-
semitones up and 8 half-semitones down using a professional
grade commercial pitch-shifting solution.1 The goal of this
data augmentation is to generate more training data and ensure
pitch independence of the trained models. Using a commercial,
de-facto standard, pitch shifting engine allows us to make
the assumption of a reasonable realistic, i.e., artifact-free and
natural-sounding pitch-shifted dataset extension.

B. Input Representation

In order to account for different requirements of different
machine learning approaches, the audio data is firstly con-
verted into two widely used input representations, a feature-
based representation with MFCCs and a mel-spectrogram.

Each snippet is divided into multiple blocks for a Short-time
Fourier transform (STFT) with a block size of 512 and a hop
size of 128 samples, respectively. Then, for each block, 20
MFCCs are extracted to form a 20 × 63 input matrix and
their mean values and standard deviations over blocks are
calculated, resulting in a 40-dimensional feature vector per
snippet. A detailed description of MFCCs and audio feature
aggregation can be found in [25]. MFCCs and aggregated
MFCCs are separately normalized to a range of 0 to 1.

A low-level acoustic representation, mel-spectrogram, is
chosen as the input representation for the deep learning
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models. A mel-frequency spectrogram is computed from the
Fourier spectrogram by applying a nonlinear transformation to
the frequency axis. The block size and hop size are identical
to the vector representation, and the mel-length is fixed at 128,
resulting in an input matrix of 128 × 63 dimension. At last,
every mel-spectrogram is normalized to a range of 0 to 1.

C. Baseline System with Support Vector Machines

SVM is a widely-used binary classifier. In audio classifica-
tion, a SVM with aggregated MFCC input can be considered
as a standard baseline. A linear kernel is used and a parameter
search is performed on c= {0.1, 1, 10, 100} during training.

D. Deep Learning with Convolutional Neural Networks

Convolutional Neural Network is a widely popular deep
learning architecture. A general CNN is comprised of one
or more convolutional layers and pooling layers followed by
one or more fully connected layers [26]. CNNs have been
extensively applied to image classification tasks [27], but also
have been increasingly popular for audio analysis such us
speech recognition [28] and instrument activity detection [29].
Borrowing the idea of passing images into a CNN, a mel-
spectrogram can be treated as a single channel image. An input
will go through multiple convolutional layers, pooling layers,
and fully-connected layers to reach a classification result. A
softmax function at the output layer of the CNN can predict
the probabilities of each class for a data point, and this data
point will be assigned to the class with the highest probability.

Due to the limited amount of data points, the designed
model’s structure is relatively simple. The CNN architecture
used in this study consists of two convolutional layers, a
pooling layer, and multiple fully-connected layers. In this
CNN, the convolutional layers and pooling layer are designed
to be the features extractors, and the fully-connected layers are
treated as a classifier. The first 2-dimensional convolutional
layer has 9 output channels, and the kernel is chosen to
be a 5 × 5 moving window, followed by a (1,1) stride in
both directions. The second convolutional layer has 15 output
channels with a 3 × 3 kernel, and it has the same stride as the
previous convolutional layer. On the other hand, the following
pooling layers applies 2-dimensional average pooling, and the
nine fully-connected layers contain 1024, 512, 256, 128, 64,
32, 16, 8, and 4 neurons.

E. Feature Learning with CNNs

Feature learning is motivated by the idea of learning mean-
ingful features from the data itself, as opposed to relying
on experts to design meaningful features with the expert
knowledge. Compared to the raw input representation, the
learned representation is expected to be more representative.

The CNN described in Sec. III-D is used to extract com-
pressed data from the input representation because the higher
layers of a CNN contain highly compressed representations
of the input. After the CNN is trained, output from any
fully-connected layer can be collected as a vector of learned
features, and the decision of taking which layer’s output is left

to be a hyperparameter for tuning during training session. The
learned features are collected and passed to a SVM, and the
SVM is trained based on the learned features and ground-truth
label targets.

F. Autoencoder

An autoencoder is a neural network whose input vector
and output vector have the same dimension, and the goal of
training an autoencoder is to minimize the difference between
the input and the output [27]. A hidden layer is selected as
encoding layer, and its dimension is called encoding dimen-
sion, denoted as kAE. The neural network from the input to the
encoding layer is treated as an encoder; similarly, the neural
network between the encoding layer and the output layer is
treated as a decoder.

An input vector for an autoencoder in this study is made by
concatenating the columns of the normalized MFCCs. With
kAE is fixed at 4, the number of hidden layers is set to nine
for both the encoder and the decoder. The hidden layers for
the encoder contain 1024, 512, 256, 128, 64, 32, 16, and
8 neurons, and the decoder’s structure is symmetric to the
encoder’s.

After the autoencoder is properly trained, the outputs of the
encoding layer or any hidden layers of the encoder can be
interpreted as a vector of learned features, and the decision of
taking which layer’s output is left to be a hyperparameter for
tuning during training session. The rest of training processes
is similar to the processes explained above: a SVM will be
trained on the learned features with the ground truth label
targets.

IV. EXPERIMENTAL SETUP

A. Datasets

1) MEEI Dataset: A commercial dataset developed by
the Massachusetts Eye and Ear Infirmary (MEEI) Voice and
Speech Labs [21] is commonly used for the classification
of voice disorders. This dataset contains 709 recordings of
sustained phonations of the vowel /ah/. All recordings were
collected in a controlled environment. The recorded audio files
have sample rate of either 25 kHz or 50 kHz. The dataset is
split into the two classes: (1) Normal with 53 samples with
a length or approximately 3 s and (2) Pathological with 656
samples of length 1 s or less. The differences in length are
possibly caused by the fact that pathological patients have
difficulties in phonating for a long time. Among the patho-
logical recordings, the top five most common voice disorders
are: Hyperfunction, A-P squeezing, Ventricular Compression,
Paralysis, and Gastric Reflux.

2) UPM Dataset: The UPM dataset was recorded by the
Technical University of Madrid (UPM) [30], [31]. It contains
440 recordings of sustained phonations of Spanish vowel /aa/
with a 50 kHz sampling rate. These 400 recordings consist of
239 normal files with a length 3 seconds and 200 pathological
files with lengths between 1 s and 3 s. Different to the MEEI
dataset, the UPM dataset contains another set of voice disor-
ders. The top five most common voice disorders are: Bilateral



Nodule, Bilateral Reinke Edema, Pedicled polyp, Sulcus in
Stria, and Epidermoid Cyst.

B. Experiments

In order to investigate the neural networks’ performance on
this task, we perform two experiments (original vs. augmented
training data) on two different datasets (MEEI and UPM),
resulting in overall 4 experiments as described below. For
each of the experiments, we compare a baseline SVM, a CNN,
features from a CNN used with an SVM, and features from an
Autoencoder used with an SVM. All experiments use 5-fold
cross-validation. It is worth noticing that the systems were
originally designed for the MEEI dataset. As mentioned in
Sect. IV-A, the MEEI dataset and the UPM dataset contain
different types of voice disorders, hence cross-dataset evalua-
tion is not implemented in this study.

The four experiments are listed below in details:
• Experiment 1:

Focusing on the non-augmented MEEI dataset with a 5-
fold cross-validation.

• Experiment 2:
Focusing on the augmented MEEI dataset with a 5-fold
cross-validation.

• Experiment 3:
Focusing on the non-augmented UPM dataset with a 5-
fold cross-validation. The same

• Experiment 4:
Focuses on the augmented UPM dataset with a 5-fold
cross-validation.

These experiments are designed to achieve the following
research goals:

• To investigate the relevance of data augmentation in
the context of deep neural networks for this task by
comparing the results from Exp. 1 and Exp. 2.

• To demonstrate the viability of using deep learning and
feature learning on voice disorder detection and exhibit
different approaches’ capabilities using the results from
Exp. 2.

• To show the importance of the amount of training data
when detecting different types of voice disorder detection
by comparing the results from Exp. 3 and Exp. 4.

• To test the robustness of the proposed approaches when
they are conducted on another dataset by comparing the
results from Exp. 1 and Exp. 3. This research goal can
also be reached by comparing the results from Exp. 2 and
Exp. 4.

The hyperparameters of the CNNs and AEs as well as the
SVM parametrization are set during the training phase with
a validation set. The separation of the training set, validation
set, and the test set is based on the original files, that is, all
snippets framed from one audio file will be in one of those
three sets. When conducting 5-fold cross-validation, twenty
percent files are isolated as the testing set, and ten percent of
the the rest of files are randomly selected as the validation set.

In Exp. 1 and Exp. 3, training data takes snippets from the

Fig. 2. Result of Experiment 1: non-augmented MEEI dataset

non-augmented dataset; however, in Exp. 2 and Exp. 4, it is
formed by snippets from the augmented dataset. The validation
and test sets, on the other hand, contain only snippets from
the non-augmented dataset.

C. Metrics

In the case of k-fold cross-validation, the k confusion
matrices are summed to get an overall confusion matrix, then
the following two metrics are computed from the overall
confusion matrix.

1) Snippet Accuracy: Since the number of data points in
the classes is unbalanced, the macro accuracy, i.e., the average
accuracy over classes is computed. This is to avoid the class
containing more data points dominating the classification
results. The following equation defines macro accuracy in
case of two classes:

C =
1

2
× (

TP

TP + FP
+

TN

FN + TN
)

2) File Accuracy: The accuracy can be calculated on the
file level using a majority vote per file. If more than 50 percent
of the snippets of a file are assigned to a certain class, then the
complete file is assumed to belong to that class. Then, macro
accuracy is applied again to calculate the average accuracy.

V. RESULTS

Cross-validation is applied on all experiments, and 5 folds
are randomly separated before each run; therefore, the accu-
racy of one specific approach can vary slightly between runs,
and an approximate value which is close to most of the results
is reported.

A. Experiment 1 with non-augmented MEEI Dataset

Fig. 2 presents the results of different approaches on
the non-augmented MEEI dataset. The SVM has the best
performance among all approaches. There are two possible
explanations for this observation: (1) the learned features



Fig. 3. Result of Experiment 2: augmented MEEI dataset

are not superior to the features designed by experts such as
MFCCs or (2) the insufficient amount of training data limits
the abilities of the neural networks, in other words, the neural
networks overfits the training data.

B. Experiment 2 with augmented MEEI Dataset

Fig. 3 shows the results for Exp. 2, using the same procedure
as Exp. 1 but with augmented training data.

The first observation is, with an increased amount of training
data, as expected, all deep learning and feature learning
approaches can improve over the baseline’s performance.

Secondly, although all deep learning and feature learning
approaches only slightly outperform the baseline, the effects of
data augmentation can be clearly observed. Every approach’s
improvement is shown in Fig. 4. The approaches using deep
neural networks have substantial improvements improvements
compared to the baseline. These observations prove the fact
that the amount of training data can significantly affect the
trained models especially when applying deep learning and
feature learning.

The next observation from both Exp. 1 and Exp. 2 is,
applying majority vote consistently increases the score. Two

Normal Pathological
Normal 96.23 % 3.77%
Pathological 4.43% 95.57%

TABLE I
CONFUSION MATRIX ON FILES, MACRO ACCURACY = 95.9%

AE + SVM APPROACH FROM EXP. 2

https://www.overleaf.com/project/5bbd544239ff686f15c337a5
Normal Pathological

Normal 93.79% 6.21%
Pathological 6.85% 93.15%

TABLE II
CONFUSION MATRIX ON SNIPPETS, MACRO ACCURACY = 93.5%

AE + SVM APPROACH FROM EXP. 2

Fig. 4. Improvement on MEEI dataset after data-augmentation

Fig. 5. Result of Experiment 3: non-augmented UPM dataset

confusion matrices are provided in Table. I and Table. II,
and these confusion matrices are recorded after running the
autoencoder and SVM. As there is only one label per file, the
majority vote is expected to remove outliers and provide more
robust results.

C. Experiment 3 with non-augmented UPM Dataset

Different datasets probably have different characteristics.
In Exp. 3 and Exp. 4, the proposed system is trained and
evaluated on the UPM dataset. A robust system is expected to
have similar performances on another dataset.

The result of experiment 3 can be found in Fig. 5. Com-
paring the results from Exp. 1 and Exp. 3, drastically reduced
accuracies for all approaches are detected. Five speculations
can be based on the results, and three speculations can be
made from the observations on the results. First, since the
proposed system architecture was originally designed for the
MEEI dataset, it might only perform well on the types of



Fig. 6. Result of Experiment 4: augmented UPM dataset

voices disorders contained in the MEEI dataset. Second, the
different recording circumstances and environments might
lead to particular characteristics that are only contained in a
particular dataset. Third, the baseline accuracy also decreases;
this observation implies that those particular characteristics
are captured by low-level acoustic features as well. Another
explanation for this phenomenon is that the aggregated MFCCs
are more suitable to separate the types of disorders in the
MEEI dataset from unimpaired vocals.

D. Experiment 4 with augmented UPM Dataset

The last experiment’ results are shown in Fig. 6. Similar to
Exp. 3, the accuracies are substantially lower than the results
from Exp. 2. The similar three speculations can still be made
in under these circumstances.

On the other hand, as shown in Fig. 7, the accuracy
improvement is similar to the improvement in Exp. 2. This
is an evidence supporting the hypothesis that the amount of
training data is a key to implement deep neural network on
voice disorder detection.

VI. CONCLUSION

This paper first proposed several approaches using deep
learning and feature learning to classify normal and patho-
logical voice recordings. These approaches, while generating
acceptable results, have high dependency on the amount
of training data. The experimental results showed that data
augmentation is a valid solution to overcome this difficulty;
however, a dataset contains more recordings is still more
desirable.

This paper also demonstrated the importance of system
evaluation using the MEEI dataset and the UPM dataset.
Since these two datasets are consisted of different set of voice
disorders and the system is originally designed for the MEEI
dataset, the performance on the UPM dataset is not as great
as expected. Generally speaking, to better test the robustness
and the generality of an approach, more and possibly less

Fig. 7. Improvement on UPM dataset after data-augmentation

homogeneous datasets are needed.
There are two general future directions of this work. First,

the capabilities of different machine learning approaches, such
as transfer learning, could be explored. These approaches
might provide novel insights into voice disorder detection.
Second, a successful and practically workable voice disorder
detector in real-life should be able to categorize unseen
audio recordings recorded in various circumstances and en-
vironments. Therefore, if there are multiple datasets contain
similar types of disorders, cross-dataset evaluation will be
an important and necessary research topic on voice disorder
detection.
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