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Abstract—Singing Voice Separation (SVS) attempts to separate
the predominant singing voice from a polyphonic musical mixture.
In this paper, we investigate the effect of introducing attribute-
specific information, namely, the frame level vocal activity infor-
mation as an augmented feature input to a Deep Neural Network
performing the separation. Our study considers two types of in-
puts, i.e, a ground-truth based ‘oracle’ input and labels extracted
by a state-of-the-art model for singing voice activity detection in
polyphonic music. We show that the separation network informed
of vocal activity learns to differentiate between vocal and non-
vocal regions. Such a network thus reduces interference and
artifacts better compared to the network agnostic to this side
information. Results on the MIR1K dataset show that informing
the separation network of vocal activity improves the separation
results consistently across all the measures used to evaluate the
separation quality.

Index Terms—Singing Voice Separation, Vocal Activity Detec-
tion, Deep Neural Networks, Attribute-aware training.

I. INTRODUCTION

Blind Audio Source Separation (BASS) is a widely explored
topic by researchers in the audio processing field, especially
Automatic Speech Recognition (ASR) and Music Information
Retrieval (MIR). BASS plays an important role in ASR/MIR
systems, as audio signals are mixtures of several audio sources
(for example: background noise interfered with speech signals,
multiple musical instruments playing at the same time) with
little information about the sources. Usually, a pre-processing
stage separates the sources, which often improves the accuracy
of ASR/MIR systems [1], [2]. A well-known problem in the
family of BASS is Singing Voice Separation (SVS), which is
the task of isolating predominant vocals from a polyphonic
musical mixture. SVS finds a wide variety of applications and
serves as a pre-processing step in MIR tasks such as removal
of vocals in karaoke systems, lyrics-to-audio alignment, singer
recognition and main melody extraction [3]–[7].

Owing to its applications, the relevance of SVS has grown
extensively in the last few years with several research groups
contributing novel methods, datasets and evaluation metrics
which are well documented as a part of the Signal Separation
Evaluation Campaign (SiSEC) [8], [9]. Although the perfor-
mance of SVS systems has improved over the last decade,
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the results show that there is still considerable room for
improvement.

In this paper, we analyze how a neural network with a
standard architecture for SVS can yield improved performance
if its input feature set is augmented with vocal activity
information. The vocal activity information, i.e., the indication
that whether a frame contains vocals or not, is fed to the
network as a one-hot encoded vector in addition to the Short-
Time Fourier transform (STFT) magnitude of the polyphonic
mixture. The research question we would like to address
is whether this additional input can improve the system
performance and how the system is impacted by the errors
in vocal activity input. The main contribution of this paper is
the systematic evaluation of an SVS network augmented with
vocal activity information in order to improve the separation
performance of the SVS network. We also quantify the effect
of vocal activity in SVS by randomly perturbing the labels,
injecting errors into the separation network and analyzing its
performance.

The remainder of the paper is organized as follows. Section
II discusses previous work done in SVS, informed source
separation, and singing voice detection. Section III introduces
our methodology. Section IV describes the experimental setup
and the dataset. The results are presented and discussed in
Section V. Finally, section VI summarizes our findings and
presents directions for future work.

II. RELATED WORK

Successful approaches to the SVS task include techniques
involving non-negative matrix factorization [10]–[12], proba-
bilistic latent component analysis [13] and Bayesian adaptation
methods [14]. Prior to the recent surge of deep learning models,
techniques such as REpeating Pattern Extraction Technique
(REPET) [15] and Robust Principal Component Analysis
(RPCA) [16] had gained popularity for exploiting repeating
patterns over a non-repeating melody (for example: repeating
chord progressions and drum loops over lead vocals).

One of the earliest neural network models for this task was
proposed by Huang et al. [17] in which a Deep Recurrent
Neural Network (DRNN) architecture, having full temporal
connections with a discriminative training procedure, predicted
separate STFT magnitude targets for vocals and accompaniment.



Roma et al. used a DNN to estimate a time-frequency mask
which is refined using F0 estimation to yield better performance
[18]. A recent work by Uhlich et al. improved the state-of-
the-art SVS results using by data augmentation and network
blending with Wiener filter post processing [19].

Recently, several novel network architectures borrowed from
related fields such as speech recognition, computer vision and
biomedical signal processing have been successfully applied
to this task. A convolutional encoder-decoder architecture that
learns a compressed representation in the encoding stage and
performs deconvolution during decoding stage to separate
vocal and accompaniment was proposed in [20]. Deep U-net
architecture, which was initially developed for medical imaging,
was applied to SVS by Jansson et. al. [21] and was built on
top of the convolutional encoder-decoder architecture while
addressing the issue of lost details during encoding.

Attribute aware training, better known as informed source
separation in the context of SVS has been an active area
of research lately [22]–[26]. Although some techniques for
score-informed musical source separation have been proposed
in [22], [26], the availability of scores may pose problems
[25]. Attribute aware training has been well-studied in speech
recognition [27]–[29] where separately trained acoustic em-
beddings or speaker derived i-vectors [30] have been used to
augment the input feature set to improve the results on speech
recognition. A closely related work used a two stage DNN
architecture for speech denoising in low SNR environments
[31]. The output of a speech activity detection network was fed
into a denoising autoencoder, enabling better speech denoising
with the implicitly computed noise statistics.

Vocal activity-informed RPCA was one of the earlier
works to incorporate vocal activity information in the RPCA
framework for SVS [24]. It was shown that the vocal activity-
informed RPCA algorithm outperformed the system uninformed
of vocal activity. In this work, we use the state-of-the-art
singing voice detection model proposed in [32] to improve
the performance of the SVS network and compare it to the
network agnostic to the additional attribute information.

III. SYSTEM

Figure 1 shows the overall structure of the system being
evaluated. The SVS system is being fed additional input about
vocal activity. The output of the network is the estimated
magnitude spectra of the vocals and accompaniment which are
inverted using the phase of the input polyphonic mixture.

A. Singing Voice Separation Network

Our model for SVS is a simple multi-layer feedforward
neural network with separate targets for vocals and accompani-
ment [17]. Our system is a 3-layer feedforward neural network
with 1024 hidden neurons each, and the input representation
is a STFT magnitude of the polyphonic mixture. The STFT is
extracted with a 1024-point FFT, frame size of 640 samples
and hop size of 320 samples (audio clips sampled at 16KHz).
Additionally, it is stacked with neighbouring audio frames as
suggested in [17] to add contextual information resulting in
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Fig. 1. Block diagram of Singing Voice Separation network informed of
vocal activity. The network predicts STFT magnitude of the sources (vocals
and accompaniment) which are combined with the STFT phase of the input
polyphonic mixture to reconstruct the waveforms of the respective sources.

an dimensionality of 3 · 512. The targets are STFT magnitude
of the separated vocals and accompaniment.

We train this network with a joint mask training procedure
as proposed in [33]. According to this procedure, the outputs of
the penultimate layer (ŷ1 and ŷ2) of the separation are used to
compute a soft time-frequency mask. The targets of the separa-
tion network, ỹ1 and ỹ2 are estimated by taking the Hadamard
product between the result of soft time-frequency masking layer
and the input magnitude spectra of the polyphonic mixture
(denoted by z).

ỹ1 =
|ŷ1|

|ŷ1|+ |ŷ2|
� z (1)

ỹ2 =
|ŷ2|

|ŷ1|+ |ŷ2|
� z (2)

The objective function to train the network is the sum of
the mean squared error between the network predictions (ỹ1,
ỹ2) and the clean sources (y1, y2).

J = ‖ỹ1 − y1‖22 + ‖ỹ2 − y2‖22 (3)

The outputs of separation network, ỹ1 and ỹ2, are combined
with the phase spectra of the original polyphonic mixture to
obtain complex spectra. We use overlap and add method to
reconstruct the respective vocal and accompaniment waveforms.

B. Vocal Activity Information

1) Oracle Labels: We present the ground truth frame level
vocal activity along with the magnitude spectrum of the
input polyphonic mixture to the SVS network to observe its
separation quality. The labels are represented as a one-hot
encoded vector of two dimensions. This is considered the best
case scenario where the labels are known during training and
inference. To further evaluate the performance under real-world
scenario, we use a model for vocal activity detection during
inference which is described below.
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Fig. 2. Modular DNN framework consisting of a CNN-based Vocal Activity Detection network and a multi-layered feed forward Singing Voice Separation
network. InputVAD is log-mel spectrogram with 20 context frames on either side and InputSVS is magnitude spectrogram of the mixture with a single frame of
context on either side. PredictionsVocals and PredictionsAccomp are the estimated magnitude spectra of the separated sources.

2) Vocal Activity Detection Model: Vocal Activity Detec-
tion (VAD) or Singing Voice Detection is closely related
to timbre classification/instrument recognition. Therefore a
number of previous works follow similar approaches of
classifying segments/frames by learning timbre. It has been
shown that with a long context logmel input representation,
Convolutional Neural Networks (CNNs) outperform most of
the other architectures [32]. Hence, we use CNNs for learning
singing voice characteristics and train it to output vocal activity
predictions which are fed into the SVS network as shown in
Figure 2. The network has the following architecture:

(i) A convolutional layer with 64 features maps and a 3x3
kernel,

(ii) A 2x2 maxpooling layer,
(iii) A convolutional layer with 32 feature maps and a 3x3

kernel,
(iv) A 2x2 maxpooling layer,
(v) 2 convolutional layers with 128 and 64 features maps

each with 3x3 kernels,
(vi) 2 dense layers of size 512 and 128,

(vii) An output layer of size 2.
The hidden layers have Relu non-linearity and the output

layer has a softmax activation. The input representation is
log-mel spectrogram with 80 filterbanks and 40 neighbouring
context frames (20 on either side of the center frame) with the
voicing label corresponding to the center frame. The model is
trained with a cross-entropy loss between the targets and the
one-hot encoded labels, optimized with Adadelta optimizer. The
architecture is a slightly modified version of the state-of-the-art
singing voice detection algorithm presented in [32].

IV. EXPERIMENTAL SETUP

A. Dataset
We use the MIR1K dataset throughout our experiments

[34]. The dataset contains 1000 snippets (total of 133 minutes)
of Chinese karaoke performances sampled at 16 kHz. It has
vocals and accompaniment tracks separated in two channels.

The vocal activity labels are annotated at the frame level with
a frame size of 40 ms and hop size of 20 ms. The data split
(Train/Test/Validation) is the same as in [17].

B. Methodology

We investigate the following scenarios during training and
inference of the SVS network:

• Case 0: No vocal activity information,
• Case I.a: Using oracle vocal activity labels (ground truth)

during training and inference,
• Case I.b: Perturbing the oracle vocal activity labels by

injecting errors at various error percentage levels during
training and inference, and

• Case II: Using a pre-trained model for vocal activity
detection during inference to evaluate a real-world use
case. The output predictions (softmax probabilities) are
fed into the separation network as shown in Figure 2.

C. Evaluation Metrics

To evaluate the quality of separation, standard performance
measures for blind source separation of audio signals (BSS
Eval measures) [35] are used. These metrics include Source-
to-Distortion Ratio (SDR), Source-to-Artifacts Ratio (SAR),
and Source-to-Interference Ratio (SIR). The estimated signal
is decomposed into target distortion, interference, and artifacts
which are used to compute the scores. The estimated signal
having minimal distortion, interference, and artifacts, will result
in high scores. A Normalized SDR measure is computed as
defined in [17] and global scores (GNSDR, GSAR and GSIR)
are reported. The global scores are computed by taking the
weighted average of the individual scores of the audio files,
weighted by their length.

D. Model Selection and Generalization

To prevent overfitting, the training in both SVS and VAD
is stopped as early as the validation loss starts to increase,
and the hyperparameters are selected based on the vocal
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TABLE I
CONFUSION MATRIX FOR THE CNN VOCAL ACTIVITY DETECTION MODEL.

Model GNSDR GSAR GSIR
Without DA 6.04 8.77 10.88

With DA 6.77 9.52 11.45
TABLE II

EFFECT OF DATA AUGMENTATION

Model GNSDR GSAR GSIR
Case 0 6.77 9.52 11.45

Case I.a 7.16 9.86 11.72
TABLE III

USING CLEAN ORACLE LABELS DURING TRAINING AND INFERENCE

GNSDR results on the validation set. It should be noted that
the amount of the training data (171 audio clips) is quite
small compared to the test set (825 audio clips), which a
reason for concern when training DNNs. As a generalization
strategy to overcome the problem of overfitting, we train the
separation network by randomly shuffling the accompaniment
every epoch before mixing them with the vocals at the input
of the separation network. This Data Augmentation (DA)
procedure virtually increases the number of training examples
and helps the separation network perform better on unseen
examples. Previous works [17], [19] have proposed similar DA
strategies to prevent overfitting.

V. RESULTS AND DISCUSSION

A. Vocal Activity Detection

Before we start our planned experiment, the performance
of the CNN-based Vocal Activity Detection model has to be
determined on the test set of MIR1K. The confusion matrix
is shown in Table I. It is observed that the model performs
reasonably well with an accuracy of 93.5% and F1 score of
0.95. This is consistent with the results reported with a similar
architecture on standard singing voice detection datasets [32].

B. Data Augmentation for Singing Voice Separation

Table II shows the effect of training with random shuffling of
accompaniment in every epoch. It is observed that DA indeed
improves the performance of the model. We will use this data
augmented model throughout the rest of our experiments.

C. Case 0 and Case I.a: Impact of Oracle Labels

To confirm our hypothesis that the vocal activity information
helps the separation network learn better while reducing
artifacts and interference, we model a best case scenario by
feeding the ground truth labels from the dataset to the SVS
network. The results of using clean oracle labels during training
and inference of the separation network is shown in Table III.

Perturb (%) GNSDR GSAR GSIR
0 7.16 9.86 11.72

2.5 6.90† 9.90 11.12
5 6.95 9.75 11.45

7.5 6.86† 9.84 11.13
10 6.73 9.71 11.02
15 6.69 9.69 10.94

TABLE IV
SEPARATION RESULTS FOR TRAINING AND INFERENCE WITH PERTURBED
VOCAL ACTIVITY LABELS. STATISTICALLY INSIGNIFICANT RESULTS ARE

DENOTED BY †.

Perturb (%) GNSDR GSAR GSIR
0 6.99 9.72 11.54

2.5 6.97 9.93 11.24
5 6.93 9.73 11.43

7.5 6.90 9.85 11.21
10 6.74 9.71‡ 11.07
15 6.72 9.71‡ 11.01

TABLE V
SEPARATION RESULTS FOR TRAINING WITH PERTURBED VOCAL ACTIVITY

LABELS AND INFERENCE USING CNN VOCAL ACTIVITY DETECTION
MODEL. STATISTICALLY INSIGNIFICANT RESULTS ARE DENOTED BY ‡.

D. Case I.b: Perturbed Oracle Labels

The results of separation network augmented with perturbed
oracle labels are shown in Tables IV. It can be observed
that as we increase the perturbation, the separation quality
drops proportionally. It is interesting to note that training with
perturbation beyond 10% makes the separation network perform
at par or slightly worse than the network not informed of vocal
activity. This elucidates the sensitivity of the separation network
to the vocal activity labels.

E. Case II: Using pre-trained vocal activity during inference

Finally, we report the results of CNN vocal activity detection
model during inference (Table V) The separation network
behaves in the same manner as in the previous case as the
separation performance decreases with increase in perturbation.

F. Discussion

To measure the significance of our results, we perform pair-
wise t-tests to confirm whether (a) Vocal activity informed SVS
is better than the network uninformed of vocal activity and (b)
As the perturbation increases, the separation quality decreases.
We confirm that all our results are statistically significantly
with p < 0.05, except the pairs denoted by † and ‡ in Table
IV and V, respectively.

It can be observed from Table II that DA improves the
separation results significantly and consistently across all three
measures. In the best case scenario of feeding unperturbed
oracle labels during inference, we observe the best separation
results which confirms our hypothesis that vocal activity
information helps in better separation performance of the DNN.
It is interesting to note that vocal activity informed RPCA [24]
did not show any improvements on GSAR while our vocal
activity informed DNN shows consistent improvements across
all three evaluation measures.
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Fig. 3. Spectrograms of Clean Vocals, Network Predictions in Case 0, and Network Predictions in Case I.a. Observe the interference and artifacts present in
Case 0, especially in unvoiced regions, and how they are improved when vocal activity information is considered (Case I.a).

In order to investigate what the network learns when
augmented with vocal activity, we plot the (a) Spectrograms of
clean vocals, (b) Network predictions of Case 0 and (c) Network
predictions of Case I.a. It can be inferred from the spectrograms
that for non-vocal regions, the artifacts and interference are
much lesser for Case I.a compared to Case 0, suggesting that
the network learns to differentiate between vocal and non-vocal
regions and suppress regions in the polyphonic mixture that
do not contain vocals and emphasize on the regions with vocal
activity. We also plot the saliency map of the network [36]
which is defined as the derivative of the output of the network
with respect to the input, in order to understand how the trained
network forms its decisions. From saliency maps, we can infer
which parts in the input are most crucial to the network and
influence the output of the network.

It can be seen from Figure 4 that the saliency map of the
vocal activity informed network reveals more characteristics of
singing voice (better harmonic structure) compared to the case
without vocal activity. Also, it can be observed once again
that the network looks only at the vocal portions of the input
and the non vocal portions are set to almost zero whereas in
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Fig. 4. Saliency maps

the case of the network agnostic of vocal activity does not
differentiate between vocal frames vs. non-vocal frames.

In Case I.b we ascertain the susceptibility of the separation
network to perturbed oracle labels. As expected, the separation
performance decreases consistently as the perturbation is
increased. Case II emulates a real-world scenario where the
vocal activity labels are unknown during inference and a model
is needed to predict the vocal activity. In comparison to the Case
I.b of testing with perturbed oracle labels, this inference with
CNN VAD model is slightly better. Our conjecture is that since
the distributions of perturbations are quite different in these
two cases, the separation network might not regard the errors
in case of random perturbations equally as the errors made
by the CNN VAD model. Since the random perturbations are
drawn from an uniform distribution, it corrupts “easy” examples
for the separation network as equally likely as the “hard”
examples. Therefore, in the case where the random perturbation
corrupts an easy example, the separation network outputs poor
predictions which would have been otherwise predicted easily.
On the other hand, we believe that the examples that are hard to
learn for the CNN VAD model are the outliers which are hard
to learn even for the separation network. Hence, the predictions
of the separation network for “easy” examples are always going
to be better when the vocal activity labels from the CNN VAD
model are used instead of perturbed oracle labels.

VI. CONCLUSION AND FUTURE WORK

We studied the effect of augmenting the separation network
with vocal activity labels during training and testing of a DNN
performing SVS. The vocal activity labels are either ground
truth labels, distorted ground truth labels, or labels predicted
with a state-of-the-art CNN VAD model. We showed that the
separation network is able to learn about the regions of vocal
activity and reduces artifacts and interference in the non-vocal
regions. As a future direction of this research, we would like to
explore more attributes that could be fed as additional inputs,
such as singer-specific features (i-vectors) and lyric-specific
features (lyric-audio alignment) so as to improve SVS.
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