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ABSTRACT

Sight-reading requires a musician to decode, process, and
perform a musical score quasi-instantaneously and without
rehearsal. Due to the complexity of this task, it is difficult
to assess the proficiency of a sight-reading performance,
and it is even more challenging to model its human as-
sessment. This study aims at evaluating and identifying
effective features for automatic assessment of sight-reading
performance. The evaluated set of features comprises task-
specific, hand-crafted, and interpretable features designed
to represent various aspect of sight-reading performance
covering parameters such as intonation, timing, dynamics,
and score continuity. The most relevant features are identi-
fied by Principal Component Analysis and forward feature
selection. For context, the same features are also applied
to the assessment of rehearsed student music performances
and compared across different assessment categories. The
results show potential of automatic assessment models for
sight-reading and the relevancy of different features as well
as the contribution of different feature groups to different
assessment categories.

1. INTRODUCTION

Sight-reading, also known as prima vista, describes the
task of reading and performing an unknown piece of music
from its musical score with little or no preparation. It is
a challenge to most students who are learning a musical
instrument.

Sight-reading performance reflects the player’s ability
in different aspects including reading music, applying fin-
gering and playing techniques, and interpreting music in a
relatively short time. As an important skill for musicians,
sight-reading is often part of school curricula as well as
auditions for professional orchestras [6]. The assessment of
sight-reading in auditions and teaching environments faces
multiple difficulties. While there are efforts to make human
assessments comparable and “less subjective,” for example
by using grading rubrics, the fairness of the assessment
can be impacted by bias effects (gender, ethnicity, general
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appearance, etc.), fatigue effects after hours of listening and
assessing, as well as individual preferences and tolerances
for various error types. An automatic assessment system
can potentially provide objective, repeatable, and unbiased
assessments. Thus, it could be helpful both as a tool avail-
able to judges to inform their decisions as well as a tutoring
system for students providing feedback in individual prac-
tice sessions. It can also help understand the important
performance parameters of sight-reading assessment and
how they compare to the assessment of general (student)
music performances.

In this study, we create a prototype and investigate the
feasibility of a sight-reading assessment system by design-
ing interpretable features for the task and evaluating the
system on a large database of professionally rated record-
ings. We also inspect commonalities and differences of
feature sets for the assessment of sight-reading vs. prepared
performances of sheet music. More specifically, we per-
form feature selection and detailed feature analysis on a
score-aligned hand-crafted feature set, identify the most
effective features for sight-reading assessment and observe
the difference in the assessment ratings of sight-reading and
a rehearsed performance.

The paper is structured as follows: the related work
on sight-reading assessment is introduced in Sect. 2 and
the evaluated features are presented in Sect. 3. Section 4
explains the experiments and discusses the results of the
feature analysis. The final Sect. 5 gives concluding remarks
and outlines future work.

2. RELATED WORK

2.1 Sight-reading skills and parameters

Sight-reading involves coordination of auditory, visual, spa-
tial, and kinesthetic systems to produce an accurate and
musical performance [11]. In sight-reading exercises, mul-
tiple layers of visual information are processed simultane-
ously when reading the score while playing the instrument.
Besson et al. has demonstrated distinct processing between
melodic and rhythmic information [2]. This indicates that
pitch accuracy and rhythmic accuracy can be treated as
two independent assessment categories. Elliott found a
strong positive relationship between wind instrumentalists’
general sight-reading ability and the ability to sight-read
rhythm patterns [5]. This suggests that features containing
rhythmic information are important for assessing a sight-
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reading performance. While intonation, rhythm, and tone
quality are typical properties to be assessed, in many cases
only an overall rating is given without details on individual
properties [1, 4].

2.2 Automatic assessment

There is only a limited number of publications for the auto-
matic assessment of sight-reading. Cheng et al. developed
a real-time system for sight-reading evaluation of piano mu-
sic [4]. The real-time system transcribes the polyphonic mu-
sic and detects wrong notes. Commercial interest is shown
by the existence of systems such as Sight Reading Prac-
tice and Assessment 1 and SightReadPlus 2 , which aims
at assessing a student playing and tracking the progress of
sight-reading.

The automatic assessment of sight-reading has many sim-
ilarities to the assessment of music performance in general.
Therefore, we should expect similar features to be relevant
for both tasks and take advantage of the broader spectrum
of publications in general performance assessment. Abeßer
et al. designed a feature set consisting of 138 features based
on the pitch contour of students’ vocal and instrumental per-
formances, applied feature selection and used the selected
features to train a Support Vector Machine (SVM) [1]. They
found that features describing the similarity of score and
audio, and the variability of note durations are the most
impactful features. Fukuda et al. presented a piano tutoring
system which applied non-negative matrix factorization for
transcription and DTW for audio-to-score alignment [8].
They basically use, similar to Cheng et al. [4], the number
of detected mistakes as core information for performance
assessment. Wu et al. proposed assessing a performance
independent of the musical score using features based on
pitch, amplitude, and rhythm histograms [16]. Vidwans et
al. extracted a set of pitch, dynamics, and tempo features
after aligning the performance to the score with Dynamic
Time Warping (DTW) [15]. Their work is followed by Gu-
rurani et al., who investigated the impact of hand-crafted
descriptors for the assessment of student alto saxophone
technical exercises by feature selection [9]. The results
reveal that score-aligned features have a higher correlation
with human assessments than score-independent features.

More recently, deep learning methods have been ap-
plied to automatic performance assessment [14]. Although

1 http://standardassessmentofsightreading.com,
Last access: 2019/04/10

2 http://mymusicta.com/products, Last access: 2019/04/10
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deep learning might be a useful tool to achieve better per-
formance for the prediction, the current success of such
approaches is often impeded by the available dataset sizes
which are often insufficient to train the models properly. A
maybe even more important drawback of deep learning is
that the interpretability is lost in the hidden layers, so that
systems based on deep learning might not be able to give
meaningful detailed feedback to a student. This is the main
reason why we focus on hand-crafted, knowledge-based
features in this study.

3. FEATURE EXTRACTION

3.1 Overview

The flow chart of feature extraction process is shown in
Figure 1. 3 Given a recording of a student’s sight-reading
exercise, the pitch contour is extracted by pYIN [12] from
the audio signal (sample rate 44.1 kHz, window and hop size
1024 and 256 samples, respectively). This pitch contour is
then aligned to the score of that piece using a modified DTW
algorithm which we refer to as Jump-enabled Dynamic
Time Warping (JDTW), a DTW variant which can account
for repeated score passages. After the alignment, features
that capture pitch, rhythmic, and dynamics properties are
extracted. The following sections will introduce JDTW, the
extracted features, and the inference model.

3.2 Jump-enabled Dynamic Time Warping

Intuitively, we expect the main difference between sight-
reading and the performance of a rehearsed piece of music,
besides a higher likelihood of errors and more variability
in tempo, to be in a higher probability of the student stop-
ping and restarting from a preceding score position after a
pause. The frequent occurrence of these jumps has been
verified through informal dataset analysis. As standard
alignment approaches such as DTW cannot properly handle
such jumps, a modification of the DTW algorithm is neces-
sary to properly align the audio sight-reading performance
to the score (in our case in MIDI format). Therefore, we
propose a Jump-enabled Dynamic Time Warping (JDTW)
which is able to handle these repetitions in the students’
sight-reading performance. The approach is inspired by Fre-

3 Source code can be accessed at https://github.com/
jhuang448/FBA_code_2019



Figure 3. Illustration of paths of index pairs for a sequence
X of length N = 9 and a sequence Y of length M = 7. Left:
original DTW; Right: JDTW.

merey et al.’s jumpDTW [7] but uses different constraints
in terms of potential jump positions and jump lengths.

Dynamic Time Warping (DTW) is a commonly used
path finding technique based on dynamic programming to
find an optimal alignment between two time series through
a pair-wise distance matrix [13]. It has been widely used
in speech recognition and musical information retrieval. It
only allows sequential alignment, which means that we can
neither walk back in a sequence nor jump in time. Given
the two sequences X := (x1, x2, ...xN ) (audio) of length
N ∈ N and Y := (y1, y2, ...yM ) (midi) of length M ∈ N,
the recursion formula of the accumulated cost matrix D of
the classical DTW is as follows:

D(n,m) = min{D(n− 1,m− 1), D(n− 1,m),

D(n,m− 1)}+ c(xn, ym) (1)

for 1 < n ≤ N and 1 < m ≤ M ; c(xn, ym) is a measure
of distance between xn and ym.

The modified accumulated cost matrix DJ for JDTW
introduces an additional cost term J(n,m) as follows:

DJ(n,m) = min{DJ(n− 1,m− 1), DJ(n− 1,m),

DJ(n,m− 1), J(n,m)}+ c(xn, ym) (2)

in which J(n,m) is the minimum accumulated cost for a
path jumping to point (n,m):

J(n,m) ={
min
i≤I
{DJ(n− 1,m+ i) + p}, pause before n

∞, otherwise
(3)

for 1 < n ≤ N and 1 < m ≤ M , where I is the largest
distance in notes allowed for a jump and p is the penalty for
jumps. Figure 3 illustrates the paths of the original DTW
and the JDTW for an example.

3.2.1 Parametrization and implementation

The adjustment of two JDTW parameters is essential: I ,
the maximum length of a jump in notes, and p, the penalty
of the jump itself. The parametrization with the lowest
accumulated cost is found empirically from a simulated
validation set of 120 synthesized sound files, leading to
the values of I = 3 and p = 3 · mean(C), in which C
is the cost matrix between X and Y (meaning that the

Index Group Description

1–8 Pitch
Mean and std of pitch dev.
(mean, std, max, min)

9–11 DTW cost
Cost of whole path, jumped
path and correct path

12–14 Tempo var.
Slope dev., number and
distance of jumps

15–16 NIR, NDR
% of silence inserted
% of short notes

17–18 Tempo (local)
Inversed tempo per note
(mean, std)

19–24 Tempo (IOI)

Crest, bin resolution,
skewness, kurtosis,
roll-off, power ratio of
the IOI histogram

25–32 Dynamics
amplitude envelope and
amplitude spikes
(mean, std, max, min)

Table 1. Overview of extracted features.

penalty depends on the average cost).All other DTW-related
parametrizations follow standard settings.

Two details are noteworthy in the context of the current
implementation: (i) after obtaining the pitch contour from
the audio and before computing the alignment, silent frames
are temporarily removed from both pitch contour and MIDI
sequence, and (ii) the distance between pitch contour xn

and MIDI pitch ym is computed after tuning frequency
adjustment as the octave-independent wrapped distance to
eliminate pYin’s frequent octave errors, however, a small
penalty of 1 is added for distances equal or higher than 12
to account for possible octave jumps in the score. After
successful application of JDTW, each audio frame is aligned
to a note in the MIDI sequence.

3.3 Feature set

The evaluated feature set can be divided into seven cate-
gories: pitch, DTW cost, tempo variation (DTW-based),
note matches, tempo (local), tempo (Inter-Onset-Interval-
based), and dynamics. Table 1 lists all 32 features explained
below with their feature indices.
• Pitch (d = 8): For each note, the mean and the

standard deviation of the pitch deviation from the
MIDI pitch is computed. Then, these features are
aggregated over the whole performance using mean,
standard deviation, maximum, and minimum of each
series. The resulting eight features are used to capture
intonation accuracy.

• DTW cost (d = 3): As a result of the alignment, we
can compute three cost metrics from the path. The
first one is the overall cost of the whole JDTW path.
The second cost is the cost of the discarded parts, i.e.,
the accumulated cost of all the repeated parts except
the last run. The third cost is the overall cost of the
path ignoring these discarded parts. These three cost
features are normalized by the length of the overall
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Figure 4. The covariance matrix among features.

path, and are a measure of pitch similarity between
the two sequences.

• Tempo variation (DTW-based) (d = 3): In addi-
tion to the cost-based features, additional features
can be extracted from the alignment path. We ex-
tract the deviation of the path slope from the diagonal
of the matrix, the number of jumps, and the total
accumulated distance of jumps.

• Note matches (d = 2): The Note Insertion Ratio
(NIR) is a feature representing additional notes in
the student performance, and the Note Deletion Ra-
tio (NDR) represents the missing notes in the per-
formance. As the alignment is performed on pitch
contour after removing all the silent frames, these
frame have to be inserted back. It is possible that a
note is split into multiple notes and that very short
(less than 3 frames) notes occur. The NIR is the dura-
tion ratio of the inserted silence to the total duration
of pitched region. The NDR is the duration ratio of
very short notes to the duration of pitched region.
• Tempo (local) (d = 2): The mean and the standard

deviation of the inverse of the tempo per note is an
estimate of the overall (inverse) tempo and its vari-
ability. For example, an eighth note lasting 1 s results
in an inverse local tempo of 8 notes

1 s .
• Tempo (IOI-based) (d = 6): From the histogram of

Inter-Onset-Intervals, the crest factor, bin resolution,
skewness, kurtosis, roll-off, and the peak power ratio
(ratio of the sum of the peak values to the sum of
all histogram values) are extracted. These features
describe general tempo characteristics.

• Dynamics (d = 8): For every note, the standard de-
viation of the envelope as well as amplitude spikes
(number of sharp amplitude changes within a note)
is computed. Similar to the pitch features, the mean,
standard deviation, maximum, and minimum are ag-
gregated over all notes. The resulting eight features
are used to capture the dynamic properties of the
performance.

4. METHODOLOGY

Our assessment system follows a general machine learning
setup as visualized in Figure 2. Our evaluation aims at
not only investigating the general feasibility of assessing
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sight-reading automatically, but also an analysis of which
features are most relevant. Furthermore, a general music
performance assessment is compared with sight-reading
assessment in order to identify similarities and differences
between the two tasks.

This section first introduces the dataset used. Then, fea-
ture analysis is performed with Principal Component Anal-
ysis and forward feature selection. Finally, the performance
and features of sight-reading assessment and general music
performance assessment is studied.

4.1 Dataset

The dataset used for this study is provided by the Florida
Bandmasters Association (FBA). It consists of audio record-
ings of Florida All-State auditions of middle and high
school students in the three years 2013, 2014, and 2015.
Each recording consists of exercises such as etudes, scales,
and sight reading and provides one expert assessments per
exercise in four categories: musicality, note accuracy, rhyth-
mic accuracy, and tone quality. For this study we focus on
the first three categories. Only a subset of this dataset is
used: we are focusing on the sight-reading exercise played
by middle school student performers for the instrument Alto
Saxophone. The recordings of technical exercise are used
to compare sight-reading assessment with the assessment
of prepared and rehearsed performances. There are a total
of 391 students’ audition recordings in the 3 years. Each
recording contains technical exercise, sight-reading exer-
cise, and other sections. The total lengths of technical and
sight-reading exercise recordings are 192 minutes and 344
minutes, respectively. As the rating scales differ over years
and categories (most of the ratings are given within 0–10,
others have the ranges 0–5, 0–15, and 0–20), they are all
linearly mapped to our target range [0, 1].

The musical score of the sight-reading exercise has been
transcribed manually after reviewing multiple highly-rated
performances from the three years.

4.2 Principal Component Analysis

Principal Components Analysis is a method to linearly trans-
form a set of possibly correlated variables into a set of uncor-
related variables (components). For the presented analysis,
we will use both the covariance matrix of the features and
the PCA loading matrix.
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The covariance matrix of the features is shown in
Figure 4. It can be observed that —unsurprisingly— fea-
tures are correlated with each other within groups. This is
true for pitch features (1–3) and (5–7), DTW cost features
(9–11), Tempo variation features (13,14), Tempo (IOI) fea-
tures (20–23), as well as Dynamics features (25,26) and
(27–29). This expected result shows that features within
one group carry similar information and verifies that the
proposed feature grouping is reasonable.

In addition to high correlation within each feature group,
some high correlation is observed across groups. The pitch
features (1–7), for instance, are highly correlated with DTW
cost features (9–11). This is the case because the DTW-
cost features are the accumulated difference between the
pitch being played and the reference pitch. The cost of
the jumped path (10) is highly correlated with number and
distance of jumps (13,14). All of these three features are a
measure of the amount of jumps in the performance. The
std of the amplitude envelope (26) is also correlated with
the jump features. One possible reason for this is that a high
number of pauses and jumps might significantly impact
the amplitude variation. Other feature correlations are less
interpretable; for example, the correlation between min of
amplitude spikes (32) and mean of the inverse local tempo
(17) is not easily explained.

Figure 5 displays the explained variance by principal
components. The eigenvalue of the first component is con-
siderably higher than that of the following components.
The first five components explain 60% of the total variance.
The loading matrix, shown for these first five components
in Figure 6, indicates that the first component is mostly a
combination of pitch features (1–7) and the pitch-related
DTW cost features (9–11). Both the second and the third
component are combinations of rhythmic IOI features with
the second focusing on tempo (20) and the third component
mostly describing tempo variation (21–23). While the in-
terpretation of the fourth component is difficult, the fifth
component clearly represents dynamics (27–29).

4.3 Inference

A SVM Regression model is trained using the extracted
features. As a linear kernel gave comparable results to
an RBF kernel, the linear kernel was chosen for sake of
simplicity. Libsvm [3] is used as implementation.

4.4 Forward Feature Selection

While the PCA gives us insights into feature correlation and
which features contribute most to explaining the variance in

the feature set, it is of limited use in deciding which features
contribute most to the assessment task. In order to identify
these, we apply forward feature selection [10]. As this
selection approach ’wraps’ the target regression algorithm,
the selected features will be task-relevant. Forward feature
selection is performed on the SVR model with 5-fold cross-
validation. The used metric to evaluate success is the R-
squared value, which is a common metric for the evaluation
of regression systems.

The result of the selection process is a list of features
ordered according to their relevance for the task. The in-
dices of the first 10 selected features for each assessment
category are listed in Table 2. This table also compares
the selected feature sets for sight reading with the sets for
a rehearsed student performance. The R-squared results
depending on the number of selected features, comparing
the sight-reading exercise with the technical exercise, are
shown in Figure 7.

4.4.1 Discussion

Figure 7 shows that the R-squared value starts to converge
after about 10 iterations of the feature selection. The highest
R-squared for musicality and rhythmic accuracy is higher
for the practiced performance, while that for note accuracy
is higher for sight-reading.

Of the selected features listed in Table 2, two of the dy-
namics features (25,26) rank high for both practiced perfor-
mance and sight-reading for all three assessment categories.
These two features are the mean and std of the amplitude
standard deviation per note. Apparently, the steadiness of
loudness plays an important role in assessing the perfor-
mance.

Looking closer into the Note Accuracy row of Table 2,

Category Practiced Sight-reading

Musicality
25,16,21,15,5,
26,11,1,6,18

25,6,32,15,29,
7,26,5,24,23

Note Acc.
9,20,17,3,28,
14,25,21,26,23

26,6,32,15,7,
23,2,9,3,11

Rhythm Acc.
25,21,16,13,26,
18,5,11,2,1

25,6,32,23,15,
29,31,8,20,1

Table 2. The first 10 selected features in forward feature
selection. Colors represent different feature groups: cyan
for pitch, purple for DTW cost, grey for tempo variance,
apricot for note matches, orange for tempo (local), pink
for tempo (IOI) and green for dynamics.
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we can observe that six of the ten selected features
(2,3,6,7,9,11) for sight-reading are features which con-
tribute highly to the first (pitch-related) PCA component.
This is not the case for technical exercise, indicating that
the pitch features contain more relevant information for
sight-reading than for practiced performance. This is also
indicated by feature 6 ranking highly in all three assess-
ment categories for sight-reading but not for practiced per-
formance. This feature is one of the aggregated features
(standard deviation of absolute differences between played
pitch and reference pitch) and is thus a measure of pitch
steadiness.

For the assessment categories Musicality and Rhythmic
Accuracy, more dynamics features are selected for sight-
reading exercise than for the practiced performance. The
reason for this might be a different expectation for the two
exercises. It might be that, either due to the low complexity
of the score or little time for preparation, a dynamically
steady performance is preferred by the judges.

During feature selection, the R-squared curve reaches its
maximum at about 10–20 iterations and drops dramatically
when nearly all the features are selected. This is unexpected
behavior for an SVM. A possible reason may be that the
dataset is not large enough to train an SVR with all the
features or that there might be some ’misleading’ features
in the feature set.

According to the results above, the automatic assessment
of sight-reading is even more challenging than assessing a
practiced performance, which performs in the range that we
expect (compare [9]) but not so well that it could be con-
sidered solved. The higher R-squared for Note Accuracy
indicates that our features, especially the intonation fea-
tures, model this category better for sight-reading than for
technical exercise. The low R-squared values for Musicality
and Rhythmic Accuracy indicate that we essentially can-
not model the human assessments either due to irrelevant
features or noisy ground truths. It means that the judges
assess the two kinds of exercises differently for these cat-
egories and that our regression model fails to capture the
information important for sight-reading.

5. CONCLUSION

We presented a feature set of 32 hand-crafted features for the
assessment of sight-reading and evaluated them for middle
school alto saxophone performances. The feature analysis
included PCA and forward feature selection based on the
R-squared of the output from an SVR. We can identify the
relevant assessment dimensions in the first few principal
components and find that the assessment of sight-reading
in general is highly influenced by dynamics, and that the
assessment of Note Accuracy is mostly focused on pitch-
related features. Judging from the absolute results, we can
see that the automatic assessment of sight-reading is still
an unsolved problem and that the presented features can
model a human assessment only imperfectly. In order to
be usable in a realistic scenario, we need to either identify
additional, more relevant features or move towards state-
of-the-art, uninterpretable feature learning solutions. As
compared to a practiced and prepared performance, we can
identify some commonalities and some differences in the set
of relevant features, but the most striking difference is the
gap of model performance between assessment categories.
Further work is needed to identify where the cause for this
gap can be found.

It is likely that rehearsed and sight-reading exercises do
not share the same assessment criteria even if the categories
are named identically. The performance, as imperfect as
it might be, is not assessed by score deviations alone, so
that our feature might not represent all critical factors. An
additional complication is that in our dataset, we only have
the assessment from one judge for each performance. The
effect of possible subjectivity and uncertainty makes are
complicated task even more challenging. More effort is
needed to be able to explain the logic behind the assess-
ment given by judges with quantitative and interpretable
indicators before they can be used in music education.
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